People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Coclite, Anna Maria
University of Bari Aldo Moro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Icephobic Gradient Polymer Coatings Coupled with Electromechanical De-icing Systems: A Promising Ice Repellent Hybrid Systemcitations
- 2024Functionalizing Surfaces by Physical Vapor Deposition To Measure the Degree of Nanoscale Contact Using FRET
- 2023Capillary-Driven Water Transport by Contrast Wettability-Based Durable Surfacescitations
- 2023Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniquescitations
- 2023Chemical vapor deposition of carbohydrate-based polymerscitations
- 2022Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited “Zincones”citations
- 2022Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited “Zincones”citations
- 2022Shedding light on the initial growth of ZnO during plasma-enhanced atomic layer deposition on vapor-deposited polymer thin filmscitations
- 2022Measurements of Temperature and Humidity Responsive Swelling of Thin Hydrogel Films by Interferometry in an Environmental Chambercitations
- 2022Humidity Responsive Reflection Grating Made by Ultrafast Nanoimprinting of a Hydrogel Thin Filmcitations
- 2021Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphenecitations
- 2021Oxidative Chemical Vapor Deposition of Conducting Polymer Films on Nanostructured Surfaces for Piezoresistive Sensor Applicationscitations
- 2020Fast optical humidity sensor based on nanostructured hydrogels
- 2020Conformal Coating of Powder by Initiated Chemical Vapor Deposition on Vibrating Substratecitations
- 2020Solvent-Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridyl-Triazolate Frameworkcitations
- 2020Initiated Chemical Vapor Deposition of Crosslinked Organic Coatings for Controlling Gentamicin Deliverycitations
- 2019Fast Optical Humidity Sensor Based on Hydrogel Thin Film Expansion for Harsh Environmentcitations
- 2017Simple method for the quantitative analysis of thin copolymer films on substrates by infrared spectroscopy using direct calibrationcitations
- 2016Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
article
Conformal Coating of Powder by Initiated Chemical Vapor Deposition on Vibrating Substrate
Abstract
<jats:p>Encapsulation of pharmaceutical powders within thin functional polymer films is a powerful and versatile method to modify drug release properties. Conformal coating over the complete surface of the particle via chemical vapor deposition techniques is a challenging task due to the compromised gas–solid contact. In this study, an initiated chemical vapor deposition reactor was adapted with speakers and vibration of particles was achieved by playing AC/DC’s song “Thunderstruck” to overcome the above-mentioned problem. To show the possibilities of this method, two types of powder of very different particle sizes were chosen, magnesium citrate (3–10 µm, cohesive powder) and aspirin (100–500 µm, good flowability), and coated with poly-ethylene-glycol-di-methacrylate. The release curve of coated magnesium citrate powder was retarded compared to uncoated powder. However, neither changing the thickness coating nor vibrating the powder during the deposition had influence on the release parameters, indicating, that cohesive powders cannot be coated conformally. The release of coated aspirin was as well retarded as compared to uncoated aspirin, especially in the case of the powder that vibrated during deposition. We attribute the enhancement of the retarded release to the formation of a conformal coating on the aspirin powder.</jats:p>