Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Ka-Loh

  • Google
  • 1
  • 7
  • 2

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis2citations

Places of action

Chart of shared publication
King, Andrew
1 / 27 shared
Coope, David
1 / 1 shared
Djoukhadar, Ibrahim
1 / 1 shared
Cootes, Timothy
1 / 2 shared
Lewis, Daniel
1 / 3 shared
Jackson, Alan
1 / 1 shared
Zhu, Xiaoping
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • King, Andrew
  • Coope, David
  • Djoukhadar, Ibrahim
  • Cootes, Timothy
  • Lewis, Daniel
  • Jackson, Alan
  • Zhu, Xiaoping
OrganizationsLocationPeople

article

A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis

  • Li, Ka-Loh
  • King, Andrew
  • Coope, David
  • Djoukhadar, Ibrahim
  • Cootes, Timothy
  • Lewis, Daniel
  • Jackson, Alan
  • Zhu, Xiaoping
Abstract

<p>This study aimed to develop and evaluate a new DCE-MRI processing technique that combines LEGATOS, a dual-temporal resolution DCE-MRI technique, with multi-kinetic models. This technique enables high spatial resolution interrogation of flow and permeability effects, which is currently challenging to achieve. Twelve patients with neurofibromatosis type II-related vestibular schwannoma (20 tumours) undergoing bevacizumab therapy were imaged at 1.5 T both before and at 90 days following treatment. Using the new technique, whole-brain, high spatial resolution images of the contrast transfer coefficient (K<sup>trans</sup>), vascular fraction (v<sub>p</sub>), extravascular extracellular fraction (v<sub>e</sub>), capillary plasma flow (F<sub>p</sub>), and the capillary permeability-surface area product (PS) could be obtained, and their predictive value was examined. Of the five microvascular parameters derived using the new method, baseline PS exhibited the strongest correlation with the baseline tumour volume (p = 0.03). Baseline v<sub>e</sub> showed the strongest correlation with the change in tumour volume, particularly the percentage tumour volume change at 90 days after treatment (p &lt; 0.001), and PS demonstrated a larger reduction at 90 days after treatment (p = 0.0001) when compared to K<sup>trans</sup> or F<sub>p</sub> alone. Both the capillary permeability-surface area product (PS) and the extravascular extracellular fraction (v<sub>e</sub>) significantly differentiated the ‘responder’ and ‘non-responder’ tumour groups at 90 days (p &lt; 0.05 and p &lt; 0.001, respectively). These results highlight that this novel DCE-MRI analysis approach can be used to evaluate tumour microvascular changes during treatment and the need for future larger clinical studies investigating its role in predicting antiangiogenic therapy response.</p>

Topics
  • impedance spectroscopy
  • surface
  • permeability