People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Araújo, Diana Filipa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Chitin-Glucan Complex Hydrogelscitations
- 2023Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPolcitations
- 2021Production of medium-chain-length polyhydroxyalkanoates by Pseudomonascitations
- 2020Low Temperature Dissolution of Yeast Chitin-Glucan Complex and Characterization of the Regenerated Polymercitations
- 2019Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerolcitations
Places of action
Organizations | Location | People |
---|
article
Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPol
Abstract
FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs’ strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs’ strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 ± 1.8 g/g) and a lower hardness value (32.4 ± 5.8 kPa). However, improved mechanical properties (221.9 ± 10.2 kPa) along with a decrease in the swelling ratio (11.9 ± 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.