Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fernandez Masaguer, Christian

  • Google
  • 1
  • 9
  • 4

Universidade de Santiago de Compostela

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 20233D-Printing of Capsule Devices as Compartmentalization Tools for Supported Reagents in the Search of Antiproliferative Isatins4citations

Places of action

Chart of shared publication
Malatini, Camilla
1 / 1 shared
Barbosa, Silvia
1 / 3 shared
Taboada, Pablo
1 / 12 shared
Beltrán, Osvaldo
1 / 1 shared
Luna, Mariángel
1 / 1 shared
Amorín, Manuel
1 / 1 shared
Blanco, José M.
1 / 1 shared
Coelho, Alberto
1 / 1 shared
Carbajales, Carlos
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Malatini, Camilla
  • Barbosa, Silvia
  • Taboada, Pablo
  • Beltrán, Osvaldo
  • Luna, Mariángel
  • Amorín, Manuel
  • Blanco, José M.
  • Coelho, Alberto
  • Carbajales, Carlos
OrganizationsLocationPeople

article

3D-Printing of Capsule Devices as Compartmentalization Tools for Supported Reagents in the Search of Antiproliferative Isatins

  • Fernandez Masaguer, Christian
  • Malatini, Camilla
  • Barbosa, Silvia
  • Taboada, Pablo
  • Beltrán, Osvaldo
  • Luna, Mariángel
  • Amorín, Manuel
  • Blanco, José M.
  • Coelho, Alberto
  • Carbajales, Carlos
Abstract

<jats:p>The application of high throughput synthesis methodologies in the generation of active pharmaceutical ingredients (APIs) currently requires the use of automated and easily scalable systems, easy dispensing of supported reagents in solution phase organic synthesis (SPOS), and elimination of purification and extraction steps. The recyclability and recoverability of supported reagents and/or catalysts in a rapid and individualized manner is a challenge in the pharmaceutical industry. This objective can be achieved through a suitable compartmentalization of these pulverulent reagents in suitable devices for it. This work deals with the use of customized polypropylene permeable-capsule devices manufactured by 3D printing, using the fused deposition modeling (FDM) technique, adaptable to any type of flask or reactor. The capsules fabricated in this work were easily loaded “in one step” with polymeric reagents for use as scavengers of isocyanides in the work-up process of Ugi multicomponent reactions or as compartmentalized and reusable catalysts in copper-catalyzed cycloadditions (CuAAC) or Heck palladium catalyzed cross-coupling reactions (PCCCRs). The reaction products are different series of diversely substituted isatins, which were tested in cancerous cervical HeLa and murine 3T3 Balb fibroblast cells, obtaining potent antiproliferative activity. This work demonstrates the applicability of 3D printing in chemical processes to obtain anticancer APIs.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • phase
  • extraction
  • copper
  • palladium