Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chettupalli, Ananda K.

  • Google
  • 1
  • 4
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Development of Dapagliflozin Solid Lipid Nanoparticles as a Novel Carrier for Oral Delivery: Statistical Design, Optimization, In-Vitro and In-Vivo Characterization, and Evaluation34citations

Places of action

Chart of shared publication
Khalid, Mohammad
1 / 13 shared
Chandolu, Swarnalatha
1 / 1 shared
Jandrajupalli, Suresh B.
1 / 1 shared
Hussain, Talib
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Khalid, Mohammad
  • Chandolu, Swarnalatha
  • Jandrajupalli, Suresh B.
  • Hussain, Talib
OrganizationsLocationPeople

article

Development of Dapagliflozin Solid Lipid Nanoparticles as a Novel Carrier for Oral Delivery: Statistical Design, Optimization, In-Vitro and In-Vivo Characterization, and Evaluation

  • Khalid, Mohammad
  • Chettupalli, Ananda K.
  • Chandolu, Swarnalatha
  • Jandrajupalli, Suresh B.
  • Hussain, Talib
Abstract

<jats:p>Controlling hyperglycemia and avoiding glucose reabsorption are significant goals in type 2 diabetes treatments. Among the numerous modes of medication administration, the oral route is the most common. Introduction: Dapagliflozin is an oral hypoglycemic agent and a powerful, competitive, reversible, highly selective, and orally active human SGLT2 inhibitor. Dapagliflozin-loaded solid lipid nanoparticles (SLNs) are the focus of our present investigation. Controlled-release lipid nanocarriers were formulated by integrating them into lipid nanocarriers. The nanoparticle size and lipid utilized for formulation help to regulate the release of pharmaceuticals over some time. Dapagliflozin-loaded nanoparticles were formulated by hot homogenization followed by ultra-sonication. The morphology and physicochemical properties of dapagliflozin-SLNs have been characterized using various techniques. The optimized dapagliflozin-SLNs have a particle size ranging from 100.13 ± 7.2 to 399.08 ± 2.4 nm with 68.26 ± 0.2 to 94.46 ± 0.7% entrapment efficiency (%EE). Dapagliflozin-SLNs were optimized using a three-factor, three-level Box–Behnken design (BBD). Polymer concentration (X1), surfactant concentration (X2), and stirring duration (X3) were chosen as independent factors, whereas %EE, cumulative drug release (%CDR), and particle size were selected as dependent variables. Interactions between drug substances and polymers were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and atomic force microscopy (AFM) analysis indicated the crystalline change from the drug to the amorphous crystal. Electron microscope studies revealed that the SLNs’ structure is nearly perfectly round. It is evident from the findings that dapagliflozin-SLNs could lower elevated blood glucose levels to normal in STZ-induced diabetic rats, demonstrating a better hypoglycemic impact on type 2 diabetic patients. The in vivo pharmacokinetic parameters of SLNs exhibited a significant rise in Cmax (1258.37 ± 1.21 mcg/mL), AUC (5247.04 mcg/mL), and oral absorption (2-fold) of the drug compared to the marketed formulation in the Sprague Dawley rats.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • amorphous
  • scanning electron microscopy
  • x-ray diffraction
  • atomic force microscopy
  • differential scanning calorimetry
  • Fourier transform infrared spectroscopy
  • homogenization
  • surfactant