Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Safari, Zeinab

  • Google
  • 1
  • 9
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cells27citations

Places of action

Chart of shared publication
Carallo, Sonia
1 / 7 shared
Rizzo, Aurora
1 / 38 shared
Bisconti, Francesco
1 / 5 shared
Colella, Silvia
1 / 29 shared
Esposito Corcione, Carola
1 / 36 shared
Nateghi, Mohamad Reza
1 / 1 shared
Listorti, Andrea
1 / 32 shared
Zarandi, Mahmood Borhani
1 / 1 shared
Giuri, Antonella
1 / 24 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Carallo, Sonia
  • Rizzo, Aurora
  • Bisconti, Francesco
  • Colella, Silvia
  • Esposito Corcione, Carola
  • Nateghi, Mohamad Reza
  • Listorti, Andrea
  • Zarandi, Mahmood Borhani
  • Giuri, Antonella
OrganizationsLocationPeople

article

Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cells

  • Carallo, Sonia
  • Rizzo, Aurora
  • Bisconti, Francesco
  • Colella, Silvia
  • Esposito Corcione, Carola
  • Nateghi, Mohamad Reza
  • Listorti, Andrea
  • Zarandi, Mahmood Borhani
  • Safari, Zeinab
  • Giuri, Antonella
Abstract

<jats:p>The performances of organometallic halide perovskite-based solar cells severely depend on the device architecture and the interface between each layer included in the device stack. In particular, the interface between the charge transporting layer and the perovskite film is crucial, since it represents both the substrate where the perovskite polycrystalline film grows, thus directly influencing the active layer morphology, and an important site for electrical charge extraction and/or recombination. Here, we focus on engineering the interface between a perovskite-polymer nanocomposite, recently developed by our group, and different commonly employed polymeric hole transporters, namely PEDOT: PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], PEDOT, PTAA [poly(bis 4-phenyl}{2,4,6-trimethylphenyl}amine)], Poly-TPD [Poly(N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)-benzidine] Poly-TPD, in inverted planar perovskite solar cell architecture. The results show that when Poly-TPD is used as the hole transfer material, perovskite film morphology improved, suggesting an improvement in the interface between Poly-TPD and perovskite active layer. We additionally investigate the effect of the Molecular Weight (MW) of Poly-TPD on the performance of perovskite solar cells. By increasing the MW, the photovoltaic performances of the cells are enhanced, reaching power conversion efficiency as high as 16.3%.</jats:p>

Topics
  • nanocomposite
  • perovskite
  • impedance spectroscopy
  • morphology
  • polymer
  • extraction
  • molecular weight
  • amine
  • power conversion efficiency
  • organometallic