People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skalski, Andrzej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021Are We Able to Print Components as Strong as Injection Molded?—Comparing the Properties of 3D Printed and Injection Molded Components Made from ABS Thermoplasticcitations
- 2021Carbon nanotube-based composite filaments for 3d printing of structural and conductive elementscitations
- 2021Soldering of Electronics Components on 3D-Printed Conductive Substratescitations
- 2020Conductive ABS/Ni Composite Filaments for Fused Deposition Modeling of Structural Electronicscitations
- 2019Mechanical and thermal properties of ABS/iron composite for fused deposition modelingcitations
- 2019Photonic curing of silver paths on 3D printed polymer substratecitations
- 2019Highly Conductive Carbon Nanotube-Thermoplastic Polyurethane Nanocomposite for Smart Clothing Applications and Beyondcitations
- 2019Heterophase materials for fused filament fabrication of structural electronicscitations
- 2018Electrically conductive acrylonitrile butadiene styrene(ABS)/copper composite filament for fused deposition modelingcitations
- 2016Accuracy of the Parts from Iron Powder Manufactured by Injection Mouldingcitations
- 2014Quantitative Analysis Of The Polymer/Metal Powder Magentic Composites Compacts Structure
- 2012Analyses of Micro Molding Process of the Thermoplastic Composition with Ceramic Fillers
- 2011Viscosity of polymer composites with high content of metal powders processed by injection moulding
Places of action
Organizations | Location | People |
---|
article
Highly Conductive Carbon Nanotube-Thermoplastic Polyurethane Nanocomposite for Smart Clothing Applications and Beyond
Abstract
The following paper presents a simple, inexpensive and scalable method of production of carbon nanotube-polyurethane elastomer composite. The new method enables the formation of fibers with 40% w/w of nanotubes in a polymer. Thanks to the 8 times higher content of nanotubes than previously reported for such composites, over an order of magnitude higher electrical conductivity is also observed. The composite fibers are highly elastic and both their electrical and mechanical properties may be easily controlled by changing the nanotubes content in the composite. It is shown that these composite fibers may be easily integrated with traditional textiles by sewing or ironing. However, taking into account their light-weight, high conductivity, flexibility and easiness of moldingit may be expected that their potential applications are not limited to the smart textiles industry.