People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pruvost, Sébastien
Institut National des Sciences Appliquées de Lyon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Ambient moisture influence on the secondary relaxations of epoxy-amine networks with different crosslink densitiescitations
- 2023Pyroresistive Properties of Composites Based on HDPE and Carbon Fillerscitations
- 2023Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocompositescitations
- 2022Effect of Temperature and Humidity on the Water and Dioxygen Transport Properties of Polybutylene Succinate/Graphene Nanoplatelets Nanocomposite Filmscitations
- 2021Dielectric behaviour of an epoxy network cured with a phosphonium-based ionic liquidcitations
- 2021Improvement of Barrier Properties of Biodegradable Polybutylene Succinate/Graphene Nanoplatelets Nanocomposites Prepared by Melt Processcitations
- 2019The Role of Fluorinated IL as an Interfacial Agent in P(VDF-CTFE)/Graphene Composite Filmscitations
- 2019The Role of Fluorinated IL as an Interfacial Agent in P(VDF-CTFE)/Graphene Composite Filmscitations
- 2017Electrical, thermal and mechanical properties of poly-etherimide epoxy-diamine blendcitations
- 2016Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquidscitations
- 2016AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocompositescitations
- 2016Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids citations
- 2014Ionic Liquids as Reactive Additives for the Preparation and Modification of Epoxy Networkscitations
- 2014Ionic Liquids as Reactive Additives for the Preparation and Modification of Epoxy Networkscitations
Places of action
Organizations | Location | People |
---|
article
The Role of Fluorinated IL as an Interfacial Agent in P(VDF-CTFE)/Graphene Composite Films
Abstract
<jats:p>The incorporation of graphene into a polymer matrix can endow composites with extended functions. However, it is difficult to well disperse pristine graphene into a polymer matrix in order to obtain polymer nanocomposites due to the lack of functional groups on the surface for bonding with a polymer matrix. Herein, we investigated the role of fluorinated ionic liquid (IL) as a new interfacial agent in poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE))/graphene composite films. First, a task-specific IL, perfluorooctyltriphenylphosphonium iodide (IL-C8F13), was synthesized and adsorbed on the surface of graphene oxide (GO) and reduced graphene oxide (rGO) for making functional nanofillers which were capable of being incorporated into the P(VDF-CTFE) matrix. The cation structure of IL combined three phenyls (potential π–π interactions with graphene) and a short fluorinated chain (enhanced miscibility with fluorinated matrix via dipolar interactions) to make a compatible graphene filler and P(VDF-CTFE) matrix at the interface among them. Second, two series of P(VDF-CTFE)/GO-IL and P(VDF-CTFE)/rGO-IL composites with different loading contents were prepared with the goal of providing an understanding of the mechanism of interfacial interactions. This paper investigated the difference in the interaction model between GO with IL and rGO with IL. Subsequently, the interfacial effect of IL on the properties of P(VDF-CTFE)/graphene composites, such as crystallization, chain segmental relaxation behavior, dispersion, and the final dielectric properties will be further studied.</jats:p>