People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pinilla, Sergio
IMDEA Energy Institute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Synthesis Procedure of Highly Densely Packed Carbon Nanotube Forests on TiN
Abstract
<jats:p>The goal of this research was to obtain high-density single-walled carbon nanotube forests (SWNTs) on conductive substrates for different applications, including field emission. For this, dip-coating was chosen as the catalyst deposition method, to subsequently grow SWNTs by Alcohol Catalytic Chemical Vapor Deposition (AC-CVD). Si (100) was chosen as the substrate, which was then coated with a TiN thin film. By sputtering with Ar, it was possible to generate alternating TiN and Si lanes, with a different wettability and, therefore, a different affinity for the catalysts. As a result, the Mo‒Co catalyst was mainly deposited on TiN and not on sputtered-Si, which allowed the selective growth of SWNT forests on the TiN conductive surfaces. These as-synthesized SWNTs were used for field emission measurements in a high vacuum chamber.</jats:p>