People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Toimil-Molares, Maria Eugenia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Conformal SiO₂ coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition
- 2024Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- 2023Electrochemical Conversion of Cu Nanowire Arrays into Metal-Organic Frameworks HKUST-1citations
- 2023Three-dimensional free-standing gold nanowire networks as a platform for catalytic applicationscitations
- 2023Experimental evidence of a size-dependent sign change of the Seebeck coefficient of Bi nanowire arrayscitations
- 2021Conical Nanotubes Synthesized by Atomic Layer Deposition of Al2O3, TiO2, and SiO2 in Etched Ion-Track Nanochannelscitations
- 2018ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applicationscitations
- 2018Nanoscale Structuring in Confined Geometries using Atomic Layer Depositioncitations
- 2017Fabrication of nanoporous graphene/polymer composite membranescitations
- 2015Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranescitations
- 2014Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless platingcitations
- 2012Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technologycitations
Places of action
Organizations | Location | People |
---|
article
ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications
Abstract
<jats:p>In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO2-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO2 coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO2 nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO2 nanowire network exhibited the highest photocurrents. However, the protection by the TiO2 coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.</jats:p>