People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ge, Yanling
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2025Microscopic characterisation of brittle fracture initiation in irradiated and thermally aged low-alloy steel welds of a decommissioned reactor pressure vesselcitations
- 2023Effect of thermal aging on microstructure and carbides of SA508/Alloy 52 dissimilar metal weldcitations
- 2023Heterogeneous Hierarchical Self-Assembly Forming Crystalline Nanocellulose–CaCO3 Hybrid Nanoparticle Biocompositescitations
- 2023Study of fusion boundary microstructure and local mismatch of SA508/alloy 52 dissimilar metal weld with butteringcitations
- 2022Fracture in the Ductile-To-Brittle Transition Region of A Narrow-Gap Alloy 52 and Alloy 52 Dissimilar Metal Weld With Butteringcitations
- 2022Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfacescitations
- 2022Effect Of Thermal Aging On The Microstructure And Mechanical Properties Of High-Ni And Ni-Base Alloys
- 2022Micromechanical modelling of additively manufactured high entropy alloys to establish structure-properties-performance workflow
- 2022Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decompositioncitations
- 2022Mechanical properties of pulsed electric current sintered CrFeNiMn equiatomic alloycitations
- 2022Nanotwinned (inter)martensite transformation interfaces in Ni50Mn25Ga20Fe5 magnetic shape memory single crystal foilcitations
- 2021Hydrogen effects in equiatomic CrFeNiMn alloy fabricated by laser powder bed fusioncitations
- 2021Silica-silicon composites for near-infrared reflectioncitations
- 2021Mechanical and tribological properties of WO2.9 and ZrO2 + WO2.9 composites studied by nanoindentation and reciprocating wear testscitations
- 2021Functionalized Nanocellulose/Multiwalled Carbon Nanotube Composites for Electrochemical Applicationscitations
- 2021Silica-silicon composites for near-infrared reflection: A comprehensive computational and experimental studycitations
- 2020Analysis of the Magneto-Mechanical Anisotropy of Steel Sheets in Electrical Applicationscitations
- 2020Cold gas spraying of a high-entropy CrFeNiMn equiatomic alloycitations
- 2017Nanosilver-Silica Compositecitations
- 2017Nanosilver-Silica Composite : Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressingscitations
- 2017Nanosilver–silica composite: Prolonged antibacterial effects and bacterial interaction mechanisms for wound dressingscitations
- 2016Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single targetcitations
- 2015Neutron Diffraction Study of the Martensitic Transformation and Chemical Order in Heusler Alloy Ni1.91Mn1.29Ga0.8
- 2015Characterization of Gas Atomized Ni-Mn-Ga powderscitations
- 2014Mechanical and thermal properties of pulsed electric current sintered (PECS) Cu-diamond compactscitations
Places of action
Organizations | Location | People |
---|
article
Nanosilver-Silica Composite
Abstract
<p>Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (similar to 5 nm) silver nanoparticles on silica matrix to form a nanosilver-silica (Ag-SiO2) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag-SiO2 composite, showed higher antibacterial effects against MRSA and E. coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag-SiO2 composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications.</p>