People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kostiainen, Mauri A.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2025Mechanoenzymatic hydrolysis of cotton to cellulose nanocrystals
- 2023Potato virus A particles – A versatile material for self-assembled nanopatterned surfacescitations
- 2022Environment-Dependent Stability and Mechanical Properties of DNA Origami Six-Helix Bundles with Different Crossover Spacingscitations
- 2022Simultaneous Organic and Inorganic Host-Guest Chemistry within Pillararene-Protein Cage Frameworkscitations
- 2021Biotemplated Lithography of Inorganic Nanostructures (BLIN) for Versatile Patterning of Functional Materialscitations
- 2018Properties and chemical modifications of lignincitations
- 2017Nanometrology and super-resolution imaging with DNAcitations
- 2017Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocompositescitations
- 2017Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterialscitations
- 2016Metallic nanostructures based on DNA nanoshapescitations
- 2015Hierarchically Ordered Supramolecular Protein-Polymer Composites with Thermoresponsive Propertiescitations
Places of action
Organizations | Location | People |
---|
document
Metallic nanostructures based on DNA nanoshapes
Abstract
Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects. ; peerReviewed