People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Labat, Maria Del Mar Baeza
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Microflow Injection System for Efficient Cu(II) Detection across a Broad Range
- 2024Amperometric Inkjet-Printed Thyroxine Sensor Based on Customized Graphene and Tunned Cyclodextrins as the Preconcentration Elementcitations
- 2022Composite Electrodes Based on Carbon Materials Decorated with Hg Nanoparticles for the Simultaneous Detection of Cd(II), Pb(II) and Cu(II)citations
- 20200D polymer nanocomposite carbon-paste electrodes using carbon nanohornscitations
- 2020Customized In Situ Functionalization of Nanodiamonds with Nanoparticles for Composite Carbon-Paste Electrodescitations
- 2018Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrodecitations
- 2018Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samplescitations
- 2017Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Reviewcitations
- 2017Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensingcitations
- 2016Characterization protocol to improve the electroanalytical response of graphene-polymer nanocomposite sensorscitations
- 2016Highly sensitive electrochemical immunosensor for IgG detection based on optimized rigid biocompositescitations
- 2016Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrincitations
- 2016Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dotscitations
- 2016CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behaviorcitations
- 2016Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocompositescitations
- 2015Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorinecitations
- 2015Improvement of the detection limit for biosensors: Advances on the optimization of biocomposite compositioncitations
- 2015Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensorscitations
- 2014Towards to the improvement of the analytical response in voltammetric sensors based on rigid compositescitations
- 2014Simple green routes for the customized preparation of sensitive carbon nanotubes/epoxy nanocomposite electrodes with functional metal nanoparticlescitations
- 2011Towards a monolithically integrated microsystem based on the green tape ceramics technology for spectrophotometric measurements. Determination of chromium (VI) in watercitations
- 2009Novel amperometric sensor based on rigid near-percolation compositecitations
Places of action
Organizations | Location | People |
---|
article
Amperometric Inkjet-Printed Thyroxine Sensor Based on Customized Graphene and Tunned Cyclodextrins as the Preconcentration Element
Abstract
The determination of thyroid hormones has practical clinical significance for the diagnosis of hyperthyroidism and hypothyroidism diseases. Considering this aspect, a wide range of analytical methods for the detection of analytes, including immunoassay, chemiluminescence, mass spectroscopy and high-performance liquid chromatography, among others, has been developed. This type of analysis provides feasible results. Nevertheless, it requires qualified staff, special facilities and is time-consuming. For this reason, this paper relies on the fabrication of an electrochemical device developed with inkjet printing technology for the free detection of Thyroxine (T4). To manufacture our electrochemical device, several aspects were considered from the use of materials that amplify electrical signals, to finding a supramolecular scaffold that possess affinity towards the target analyte and the need of preconcentrating the analyte on the electrode's surface. For this task, printed devices were modified with a hybrid nanomaterial consisting of reduced graphene oxide (rGO) tuned with Au nanoparticles (Au-NPs) and an entrapment agent and different thiolated cyclodextrins (x-CD-SH) as carrying agents. Analytes were preconcentrated via supramolecular chemistry due to the formation of an inclusion complex between the cyclodextrin and hormones. Morphological and electrochemical characterization of the final device was carried out to ensure the proper workability of the electrode, achieving excellent response, sensitivity and limit of detection (LOD).