People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Panchenko, Juliana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Laboratory X-ray Microscopy of 3D Nanostructures in the Hard X-ray Regime Enabled by a Combination of Multilayer X-ray Opticscitations
- 2023Intermetallic Growth Study of Ultra-Thin Copper and Tin Bilayer for Hybrid Bonding Applicationscitations
- 2023Cu-Cu Thermocompression Bonding with a Self-Assembled Monolayer as Oxidation Protection for 3D/2.5D System Integrationcitations
- 2022Corrosion study on Cu/Sn-Ag solid-liquid interdiffusion microbumps by salt spray testing with 5 wt.% NaCl solutioncitations
- 2022Metallurgical aspects and joint properties of Cu-Ni-In-Cu fine-pitch interconnects for 3D integrationcitations
- 2022Determination of melting and solidification temperatures of Sn-Ag-Cu solder spheres by infrared thermographycitations
- 2020Grain Structure Analysis of Cu/SiO2 Hybrid Bond Interconnects after Reliability Testingcitations
- 2020Low temperature solid state bonding of Cu-In fine-pitch interconnects
- 2020Morphologies of Primary Cu6Sn5 and Ag3Sn Intermetallics in Sn–Ag–Cu Solder Ballscitations
- 2020Grain Structure Analysis of Cu/SiO2Hybrid Bond Interconnects after Reliability Testingcitations
- 2019Effects of isothermal storage on grain structure of Cu/Sn/Cu microbump interconnects for 3D stackingcitations
- 2018Morphology Variations of Primary Cu6Sn5 Intermetallics in Lead-Free Solder Ballscitations
- 2018Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integrationcitations
- 2017Influence of flux-assisted isothermal storage on intermetallic compounds in Cu/SnAg microbumpscitations
- 2017Fabrication and characterization of precise integrated titanium nitride thin film resistors for 2.5D interposercitations
- 2014Degradation of Cu6Sn5 intermetallic compound by pore formation in solid-liquid interdiffusion Cu/Sn microbump interconnectscitations
- 2013Microstructure investigation of Cu/SnAg solid-liquid interdiffusion interconnects by Electron Backscatter Diffractioncitations
- 2012Effects of bonding pressure on quality of SLID interconnectscitations
- 2011The creep behaviour and microstructure of ultra small solder jointscitations
- 2011Solidification processes in the Sn-rich part of the SnCu systemcitations
- 2010Microstructure Characterization Of Lead‐Free Solders Depending On Alloy Compositioncitations
- 2010The scaling effect on microstructure and creep properties of Sn-based solderscitations
- 2010Metallographic preparation of the SnAgCu solders for optical microscopy and EBSD Investigationscitations
Places of action
Organizations | Location | People |
---|
article
Laboratory X-ray Microscopy of 3D Nanostructures in the Hard X-ray Regime Enabled by a Combination of Multilayer X-ray Optics
Abstract
High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics—a side-by-side Montel (or nested Kirkpatrick–Baez) condenser optic and a high aspect-ratio multilayer Laue lens—results in an asymmetric optical path in the transmission X-ray microscope. This optics arrangement allows the imaging of 3D nanostructures in opaque objects at a photon energy of 24.2 keV (In-Kα X-ray line). Using a Siemens star test pattern with a minimal feature size of 150 nm, it was proven that features < 150 nm can be resolved. In-Kα radiation is generated from a Ga-In alloy target using a laboratory X-ray source that employs the liquid-metal-jet technology. Since the penetration depth of X-rays into the samples is significantly larger compared to 8 keV photons used in state-of-the-art laboratory X-ray microscopes (Cu-Kα radiation), 3D-nanopattered materials and structures can be imaged nondestructively in mm to cm thick samples. This means that destructive de-processing, thinning or cross-sectioning of the samples are not needed for the visualization of interconnect structures in microelectronic products manufactured using advanced packaging technologies. The application of laboratory transmission X-ray microscopy in the hard X-ray regime is demonstrated for Cu/Cu6Sn5/Cu microbump interconnects fabricated using solid–liquid interdiffusion (SLID) bonding. ; 14 ; 2