Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nikitin, Alexander A.

  • Google
  • 1
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Study of Precipitates in Oxide Dispersion-Strengthened Steels by SANS, TEM, and APT2citations

Places of action

Chart of shared publication
Ke, Yubin
1 / 1 shared
Kopitsa, Gennadiy P.
1 / 1 shared
Almásy, László
1 / 11 shared
Bogachev, Aleksei
1 / 1 shared
Rogozhkin, Sergey V.
1 / 1 shared
Gorshkova, Yulia
1 / 3 shared
Klauz, Artem V.
1 / 1 shared
Sun, Liying
1 / 1 shared
Khomich, Artem A.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ke, Yubin
  • Kopitsa, Gennadiy P.
  • Almásy, László
  • Bogachev, Aleksei
  • Rogozhkin, Sergey V.
  • Gorshkova, Yulia
  • Klauz, Artem V.
  • Sun, Liying
  • Khomich, Artem A.
OrganizationsLocationPeople

article

Study of Precipitates in Oxide Dispersion-Strengthened Steels by SANS, TEM, and APT

  • Ke, Yubin
  • Kopitsa, Gennadiy P.
  • Almásy, László
  • Bogachev, Aleksei
  • Rogozhkin, Sergey V.
  • Gorshkova, Yulia
  • Klauz, Artem V.
  • Sun, Liying
  • Nikitin, Alexander A.
  • Khomich, Artem A.
Abstract

<jats:p>In this work, the nanostructure of oxide dispersion-strengthened steels was studied by small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and atomic probe tomography (APT). The steels under study have different alloying systems differing in their contents of Cr, V, Ti, Al, and Zr. The methods of local analysis of TEM and APT revealed a significant number of nanosized oxide particles and clusters. Their sizes, number densities, and compositions were determined. A calculation of hardness from SANS data collected without an external magnetic field, or under a 1.1 T field, showed good agreement with the microhardness of the materials. The importance of taking into account two types of inclusions (oxides and clusters) and both nuclear and magnetic scattering was shown by the analysis of the scattering data.</jats:p>

Topics
  • dispersion
  • cluster
  • inclusion
  • steel
  • hardness
  • transmission electron microscopy
  • precipitate
  • small-angle neutron scattering
  • atom probe tomography