People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shanov, Vesselin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Effect of Synthesis Conditions on the Structure and Electrochemical Properties of Vertically Aligned Graphene/Carbon Nanofiber Hybridscitations
- 2024Modified 3D Graphene for Sensing and Electrochemical Capacitor Applicationscitations
- 2023Boosting Thermoelectric Power Factor of Carbon Nanotube Networks with Excluded Volume by Co-Embedded Microparticlescitations
- 2019Fiber Supercapacitors Based on Carbon Nanotube-PANI Composites
- 2007Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensingcitations
Places of action
Organizations | Location | People |
---|
article
Modified 3D Graphene for Sensing and Electrochemical Capacitor Applications
Abstract
<jats:p>Less defective, nitrogen-doped 3-dimensional graphene (N3DG) and defect-rich, nitrogen-doped 3-dimensional graphene (N3DG-D) were made by the thermal CVD (Chemical Vapor Deposition) process via varying the carbon precursors and synthesis temperature. These modified 3D graphene materials were compared with pristine 3-dimensional graphene (P3DG), which has fewer defects and no nitrogen in its structure. The different types of graphene obtained were characterized for morphological, structural, and compositional assessment through Scanning Electron Microscopy (SEM), Raman Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS) techniques. Electrodes were fabricated, and electrochemical characterizations were conducted to evaluate the suitability of the three types of graphene for heavy metal sensing (lead) and Electric Double-Layer Capacitor (EDLC) applications. Initially, the various electrodes were treated with a mixture of 2.5 mM Ruhex (Ru (NH3)6Cl3 and 25 mM KCl to confirm that all the electrodes underwent a reversible and diffusion-controlled electrochemical process. Defect-rich graphene (N3DG-D) revealed the highest current density, followed by pristine (P3DG) and less-defect graphene (N3DG). Further, the three types of graphene were subjected to a sensing test by square wave anodic stripping voltammetry (SWASV) for lead detection. The obtained preliminary results showed that the N3DG material provided a great lead-sensing capability, detecting as little as 1 µM of lead in a water solution. The suitability of the electrodes to be employed in an Electric Double-Layer Capacitor (EDLC) was also comparatively assessed. Electrochemical characterization using 1 M sodium sulfate electrolyte was conducted through cyclic voltammetry and galvanostatic charge-discharge studies. The voltammogram and the galvanostatic charge-discharge (GCD) curves of the three types of graphene confirmed their suitability to be used as EDLC. The N3DG electrode proved superior with a gravimetric capacitance of 6.1 mF/g, followed by P3DG and N3DG, exhibiting 1.74 mF/g and 0.32 mF/g, respectively, at a current density of 2 A/g.</jats:p>