People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Winkler, Robert
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Nanoscale, surface-confined phase separation by electron beam induced oxidationcitations
- 2024A Review on Direct-Write Nanoprinting of Functional 3D Structures with Focused Electron Beamscitations
- 2023Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printingcitations
- 2023Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model Systemcitations
- 2022Combining AFM with FIB/SEM in Nanofabrication
- 2022A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloyscitations
- 2022Direct-Write 3D Nanoprinting of High-Resolution Magnetic Force Microscopy Nanoprobes
- 2019In situ real-time annealing of ultrathin vertical Fe nanowires grown by focused electron beam induced depositioncitations
- 2019Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomographycitations
- 2014The nanoscale implications of a molecular gas beam during electron beam induced depositioncitations
- 2013Chemical degradation and morphological instabilities during focused ion beam prototyping of polymerscitations
Places of action
Organizations | Location | People |
---|
article
Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model System
Abstract
<p>Electron-induced fragmentation of the HFeCo<sub>3</sub>(CO)<sub>12</sub> precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation. The use of the single source precursor provides a unique insight into high- and low-energy fragmentation channels being active in the same deposit formation process.</p>