People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jana, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporationcitations
- 2019Consciousness Energy Healing Treatment and its Impact on Physicochemical and Thermal Properties of Tellurium
- 2019Impact of the Trivedi Effect® on the Physicochemical Properties of Antimony
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powdercitations
- 2015Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powdercitations
- 2015Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatmentcitations
- 2015Evaluation of Biofield Treatment on Physical and Structural Properties of Bronze Powder
- 2015Influence of Biofield Treatment on Physical, Structural and Spectral Properties of Boron Nitridecitations
- 2015Physical, Thermal and Spectroscopical Characterization of Biofield Treated Triphenylmethane: An Impact of Biofield Treatmentcitations
- 2015Effect of biofield treatment on structural and morphological properties of silicon carbidecitations
- 2008Analytical study of tensile behaviors of UHMWPE/nano-epoxy bundle compositescitations
- 2007The control of bearing stiffness using shape memory
Places of action
Organizations | Location | People |
---|
article
Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
Abstract
<jats:p>By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI3 (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI3 matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap.</jats:p>