Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gutsch, Sebastian

  • Google
  • 6
  • 43
  • 112

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Two-Step Electrochemical Au Nanoparticle Formation in Polyanilinecitations
  • 2020In situ approach to fabricate heterojunction p-n CuO-ZnO nanostructures for efficient photocatalytic reactions15citations
  • 2019Influence of Al₂O₃ Nanoparticle Addition on a UV Cured Polyacrylate for 3D Inkjet Printingcitations
  • 2019Electron beam effects on oxide thin films - structure and electrical property correlations31citations
  • 2014Absence of quantum confinement effects in the photoluminescence of Si3N4-embedded Si nanocrystals45citations
  • 2014A low thermal impact annealing process for SiO2-embedded Si nanocrystals with optimized interface quality21citations

Places of action

Chart of shared publication
Becker, Hans-Werner
1 / 16 shared
Zhao, Bin
1 / 4 shared
Zacharias, Margit
5 / 8 shared
Singh, Rohit
1 / 3 shared
Prescher, Mario
1 / 21 shared
Pal, Bhupender
1 / 2 shared
Suresh, Mahesh
1 / 1 shared
Lopez-Vidrier, Julian
1 / 2 shared
Kaur, Rupinder
1 / 1 shared
Weiss, Charlotte
2 / 11 shared
Kirste, Lutz
1 / 46 shared
Crespo, Julian
1 / 1 shared
Hanemann, Thomas
1 / 40 shared
Burchard, Sven
1 / 1 shared
Graf, Dennis
1 / 3 shared
Megnin, Christof
1 / 11 shared
Neelisetty, Krishna Kanth
1 / 1 shared
Seggern, Falk Von
1 / 1 shared
Kienle, Lorenz
1 / 52 shared
Vahl, Alexander
1 / 14 shared
Chakravadhanula, Venkata Sai Kiran
1 / 4 shared
Scherer, Torsten
1 / 12 shared
Mu, Xiaoke
1 / 7 shared
Kübel, Christian
1 / 44 shared
Hansen, Mirko
1 / 1 shared
Molinari, Alan
1 / 2 shared
Hiller, D.
2 / 5 shared
Estrade, S.
1 / 4 shared
Janz, Stefan
1 / 20 shared
Lopez-Conesa, L.
1 / 3 shared
López-Vidrier, Julian
1 / 3 shared
Peiro, F.
1 / 7 shared
Maly, P.
1 / 1 shared
Dyakov, Sergey A.
1 / 2 shared
Trojanek, F.
1 / 3 shared
Valenta, J.
1 / 2 shared
Garrido, B.
1 / 2 shared
Zelenina, A.
1 / 1 shared
Korinek, M.
1 / 1 shared
Schnabel, Manuel
1 / 6 shared
Hartel, A. M.
1 / 1 shared
Löper, Philipp
1 / 6 shared
Gebel, T.
1 / 2 shared
Chart of publication period
2023
2020
2019
2014

Co-Authors (by relevance)

  • Becker, Hans-Werner
  • Zhao, Bin
  • Zacharias, Margit
  • Singh, Rohit
  • Prescher, Mario
  • Pal, Bhupender
  • Suresh, Mahesh
  • Lopez-Vidrier, Julian
  • Kaur, Rupinder
  • Weiss, Charlotte
  • Kirste, Lutz
  • Crespo, Julian
  • Hanemann, Thomas
  • Burchard, Sven
  • Graf, Dennis
  • Megnin, Christof
  • Neelisetty, Krishna Kanth
  • Seggern, Falk Von
  • Kienle, Lorenz
  • Vahl, Alexander
  • Chakravadhanula, Venkata Sai Kiran
  • Scherer, Torsten
  • Mu, Xiaoke
  • Kübel, Christian
  • Hansen, Mirko
  • Molinari, Alan
  • Hiller, D.
  • Estrade, S.
  • Janz, Stefan
  • Lopez-Conesa, L.
  • López-Vidrier, Julian
  • Peiro, F.
  • Maly, P.
  • Dyakov, Sergey A.
  • Trojanek, F.
  • Valenta, J.
  • Garrido, B.
  • Zelenina, A.
  • Korinek, M.
  • Schnabel, Manuel
  • Hartel, A. M.
  • Löper, Philipp
  • Gebel, T.
OrganizationsLocationPeople

article

Two-Step Electrochemical Au Nanoparticle Formation in Polyaniline

  • Becker, Hans-Werner
  • Zhao, Bin
  • Gutsch, Sebastian
Abstract

<jats:p>In this work, we use a two-step cyclic electrochemical process to insert Au into polyaniline (PANI). It was suggested previously that this method would lead to the formation of atomic Au clusters with controlleds number of Au atoms without providing morphological proof. In each cycle, tetrachloroaurate anions (AuCl4−) are attached on the protonated imine sites of PANI, followed by a controlled reduction using cyclic voltammetry (CV). In contrast to previous work, we demonstrate that the reduction leads to the nucleation and growth of an Au nanoparticle (NP) whose density and size dispersion depend on the Au loading in PANI. Adding more deposition cycles increases the Au NP density and size. Transmission electron microscopy (TEM) and corresponding energy dispersive X-ray spectroscopy (EDS) indicate a homogeneous distribution of Au elements in the PANI matrix before CV reduction, while Au elements are aggregated and clearly localized in the NPs positions after CV reduction. We further use Rutherford backscattering spectrometry (RBS) to quantify the Au uptake in PANI. The Au distribution is verified to be initially homogeneous across the PANI layer whereas the increasing number of deposition cycles leads to a surface segregation of Au. We propose a two-step growth model based on our experimental results. Finally, we discuss the results with respect to the formation of atomic Au clusters reported previously using the same deposition method.</jats:p>

Topics
  • nanoparticle
  • Deposition
  • density
  • impedance spectroscopy
  • dispersion
  • surface
  • cluster
  • transmission electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • cyclic voltammetry
  • Rutherford backscattering spectrometry