People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Foldyna, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Evolution of Cu-In Catalyst Nanoparticles under Hydrogen Plasma Treatment and Silicon Nanowire Growth Conditionscitations
- 2020Improvement of carrier collection in Si/a-Si:H nanowire solar cells by using hybrid ITO/silver nanowires contactscitations
- 2020ALD of ZnO:Ti: Growth Mechanism and Application as an Efficient Transparent Conductive Oxide in Silicon Nanowire Solar Cellscitations
- 2017Tuning the properties of F:SnO 2 (FTO) nanocomposites with S:TiO 2 nanoparticles – promising hazy transparent electrodes for photovoltaics applicationscitations
- 2017Tuning the properties of F:SnO 2 (FTO) nanocomposites with S:TiO 2 nanoparticles : promising hazy transparent electrodes for photovoltaics applicationscitations
- 2016Flexible Photodiodes Based on Nitride Core/Shell p-n Junction Nanowirescitations
- 2016Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trappingcitations
- 2014In-situ spectroscopic ellipsometry of microcrystalline silicon deposited by plasma-enhanced chemical vapor deposition on flexible Fe-Ni alloy substrate for photovoltaic applicationscitations
- 2012Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Evolution of Cu-In Catalyst Nanoparticles under Hydrogen Plasma Treatment and Silicon Nanowire Growth Conditions
Abstract
International audience ; We report silicon nanowire (SiNW) growth with a novel Cu-In bimetallic catalyst using a plasma-enhanced chemical vapor deposition (PECVD) method. We study the structure of the catalyst nanoparticles (NPs) throughout a two-step process that includes a hydrogen plasma pre-treatment at 200 • C and the SiNW growth itself in a hydrogen-silane plasma at 420 • C. We show that the H 2-plasma induces a coalescence of the Cu-rich cores of as-deposited thermally evaporated NPs that does not occur when the same annealing is applied without plasma. The SiNW growth process at 420 • C induces a phase transformation of the catalyst cores to Cu 7 In 3 ; while a hydrogen plasma treatment at 420 • C without silane can lead to the formation of the Cu 11 In 9 phase. In situ transmission electron microscopy experiments show that the SiNWs synthesis with Cu-In bimetallic catalyst NPs follows an essentially vapor-solid-solid process. By adjusting the catalyst composition, we manage to obtain small-diameter SiNWs-below 10 nm-among which we observe the metastable hexagonal diamond phase of Si, which is predicted to have a direct bandgap.