People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rusydi, Andrivo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023A Facile Two-Step Hydrothermal Synthesis of Co(OH)2@NiCo2O4 Nanosheet Nanocomposites for Supercapacitor Electrodescitations
- 2023Unrevealing tunable resonant excitons and correlated plasmons and their coupling in new amorphous carbon-like for highly efficient photovoltaic devicescitations
- 2018Design, fabrication, and characterisation of wire grid polarizers for the deep UV spectral rangecitations
- 2017Investigation of the metal-insulator transition in NdNiO3 films by site-selective X-ray absorption spectroscopycitations
- 2013Cationic vacancies and anomalous spectral-weight transfer in Ti1-xTaxO2 thin films studied via polarization-dependent near-edge x-ray absorption fine structure spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
A Facile Two-Step Hydrothermal Synthesis of Co(OH)2@NiCo2O4 Nanosheet Nanocomposites for Supercapacitor Electrodes
Abstract
<jats:p>The composites of NiCo2O4 with unique structures were substantially investigated as promising electrodes. In this study, the unique structured nanosheets anchored on nickel foam (Ni foam) were prepared under the hydrothermal technique of NiCo2O4 and subsequent preparation of Co(OH)2. The Co(OH)2@NiCo2O4 nanosheet composite has demonstrated higher specific capacitances owing to its excellent specific surface region, enhanced rate properties, and outstanding electrical conductivities. Moreover, the electrochemical properties were analyzed in a three-electrode configuration to study the sample material. The as-designed Co(OH)2@NiCo2O4 nanosheet achieves higher specific capacitances of 1308 F·g−1 at 0.5 A·g−1 and notable long cycles with 92.83% capacity retention over 6000 cycles. The Co(OH)2@NiCo2O4 nanosheet electrode exhibits a long life span and high capacitances compared with the NiCo2O4 and Co(OH)2 electrodes, respectively. These outstanding electrochemical properties are mainly because of their porous construction and the synergistic effects between NiCo2O4 and Co(OH)2. Such unique Co(OH)2@NiCo2O4 nanosheets not only display promising applications in renewable storage but also reiterate to scientists of the unlimited potential of high-performance materials.</jats:p>