Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mustafa, Seher

  • Google
  • 1
  • 6
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye11citations

Places of action

Chart of shared publication
Saad, Muhammad
1 / 3 shared
Attala, Osama
1 / 1 shared
Tahir, Hajira
1 / 2 shared
Filfilan, Wessam M.
1 / 1 shared
Attia, Kamal A.
1 / 2 shared
Zeb, Jahan
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Saad, Muhammad
  • Attala, Osama
  • Tahir, Hajira
  • Filfilan, Wessam M.
  • Attia, Kamal A.
  • Zeb, Jahan
OrganizationsLocationPeople

article

Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye

  • Saad, Muhammad
  • Mustafa, Seher
  • Attala, Osama
  • Tahir, Hajira
  • Filfilan, Wessam M.
  • Attia, Kamal A.
  • Zeb, Jahan
Abstract

<jats:p>Eliminating hazardous contaminants is a necessity for maintaining a healthy environment on Earth. This work used a sustainable method to create Iron–Zinc nanocomposites with polyvinyl alcohol assistance. Mentha Piperita (mint leaf) extract was used as a reductant in the green synthesis of bimetallic nanocomposites. Doping with Poly Vinyl Alcohol (PVA) caused a reduction in crystallite size and greater lattice parameters. XRD, FTIR, EDS, and SEM techniques were used to establish their surface morphology and structural characterization. The high-performance nanocomposites were used to remove malachite green (MG) dye using the ultrasonic adsorption technique. Adsorption experiments were designed by central composite design and optimized by response surface methodology. According to this study, 77.87% of the dye was removed at the optimum optimized parameters (10.0 mg L−1 was the concentration of MG dye at a time of 8.0 min, pH 9.0, and 0.02 g of adsorbent amount) with adsorption capacity up to 92.59 mg·g−1. The dye adsorption followed Freundlich’s isotherm model and the pseudo-second-order kinetic model. Thermodynamic analysis affirmed the spontaneous nature of adsorption due to negative ΔGo values. As a result, the suggested approach offers a framework for creating an effective and affordable technique to remove the dye from a simulated wastewater system for environmental conservation.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • zinc
  • ultrasonic
  • iron
  • Energy-dispersive X-ray spectroscopy
  • alcohol