People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carneiro, I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Investigation of Mechanical Properties of Al/CNT Nanocomposites Produced by Powder Metallurgycitations
- 2023Microstructural Characterization of Al/CNTs Nanocomposites after Cold Rollingcitations
- 2023Production and Characterization of Cu/CNT Nanocompositescitations
- 2023Investigation of thermal stability of aluminum matrix nanocomposites using functionalized MWCNTscitations
- 2022Deformation Behaviour of Cold-Rolled Ni/CNT Nanocompositescitations
- 2021Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Reviewcitations
- 2021Investigation on the Strengthening Mechanisms of Nickel Matrix Nanocompositescitations
- 2021Heat-Treated Ni-CNT Nanocomposites Produced by Powder Metallurgy Routecitations
- 2020Recent Advances in EBSD Characterization of Metalscitations
- 2020Characterization of Ni-CNTs Nanocomposites Produced by Ball-Millingcitations
- 2020Effect of Morphology and Structure of MWCNTs on Metal Matrix Nanocompositescitations
- 2019EBSD Analysis of Metal Matrix Nanocomposite Microstructure Produced by Powder Metallurgycitations
- 2019Microstructural Characterization of Carbon Nanotubes (CNTs)-Reinforced Nickel Matrix Nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Microstructural Characterization of Al/CNTs Nanocomposites after Cold Rolling
Abstract
The deformation behaviour of aluminium reinforced by carbon nanotubes (Al/CNTs) nanocomposites during cold rolling was investigated in this work. Deformation processes after production by conventional powder metallurgy routes may be an efficient approach to improve the microstructure and mechanical properties by decreasing the porosity. Metal matrix nanocomposites have enormous potential to produce advanced components, mainly in the mobility industry, with powder metallurgy being one of the most reported production processes. For this reason, it is increasingly important to study the deformation behaviour of nanocomposites. In this context, nanocomposites were produced via powder metallurgy. Advanced characterization techniques carried out the microstructural characterization of the as-received powders and produced nanocomposites. The microstructural characterization of the as-received powders and produced nanocomposites was carried out through optical microscopy (OM), and scanning and transmission electron microscopy (SEM and TEM), complemented by electron backscattered diffraction (EBSD). The powder metallurgy route followed by cold rolling is reliable for Al/CNTs nanocomposites. The microstructural characterization shows that the nanocomposites exhibit a different crystallographic orientation than the Al matrix. CNTs in the matrix influence grain rotation during sintering and deformation. Mechanical characterization revealed that during deformation, there is an initial decrease in the hardness and tensile strength for the Al/CNTs and Al matrix. The initial decrease was attributed to the Bauschinger effect being more significant for the nanocomposites. The difference in the mechanical properties of the nanocomposites and Al matrix was attributed to distinct texture evolution during cold rolling.