People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Enculescu, Monica
National Institute of Materials Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devicescitations
- 2023Microengineering Design for Advanced W-Based Bulk Materials with Improved Propertiescitations
- 2022Processing Effects on the Martensitic Transformation and Related Properties in the Ni55Fe18Nd2Ga25 Ferromagnetic Shape Memory Alloycitations
- 2022Kinetics and the Effect of Thermal Treatments on the Martensitic Transformation and Magnetic Properties in Ni49Mn32Ga19 Ferromagnetic Shape Memory Ribbonscitations
- 2021Magnetic and Magnetostrictive Properties of Ni50Mn20Ga27Cu3 Rapidly Quenched Ribbonscitations
- 2020Graphene oxide concentration effect on the optoelectronic properties of ZnO/GO nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Microengineering Design for Advanced W-Based Bulk Materials with Improved Properties
Abstract
<jats:p>In fusion reactors, such as ITER or DEMO, the plasma used to generate nuclear reactions will reach temperatures that are an order of magnitude higher than in the Sun’s core. Although the plasma is not supposed to be in contact with the reactor walls, a large amount of heat generated by electromagnetic radiation, electrons and ions being expelled from the plasma will reach the plasma-facing surface of the reactor. Especially for the divertor part, high heat fluxes of up to 20 MW/m2 are expected even in normal operating conditions. An improvement in the plasma-facing material (which is, in the case of ITER, pure Tungsten, W) is desired at least in terms of both a higher recrystallization temperature and a lower brittle-to-ductile transition temperature. In the present work, we discuss three microengineering routes based on inclusions of nanometric dispersions, which are proposed to improve the W properties, and present the microstructural and thermophysical properties of the resulting W-based composites with such dispersions. The materials’ behavior after 6 MeV electron irradiation tests is also presented, and their further development is discussed.</jats:p>