Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sobolev, Alexey

  • Google
  • 8
  • 26
  • 94

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Controlled Reduction of Sn4+ in the Complex Iodide Cs2SnI6 with Metallic Gallium2citations
  • 2009Electronic state of the 57 Fe probe atoms in perovskites LaMO 3 (M = Ni, Cu)2citations
  • 2009Electronic state of 57Fe Mössbauer probe atoms in Cu(III) oxides with perovskite and perovskite-related structures2citations
  • 2008On the evolution of the DyNiO3 perovskite across the metal–insulator transition though neutron diffraction and Mössbauer spectroscopy studies19citations
  • 2007Electronic state of 57Fe used as Mössbauer probe in the perovskites LaMO3 (M=Ni and Cu)6citations
  • 2007Sn20.5□3.5As22I8: A Largely Disordered Cationic Clathrate with a New Type of Superstructure and Abnormally Low Thermal Conductivity45citations
  • 2006High oxygen pressures and the stabilization of the highest oxidation states of transition metals - Mössbauer spectroscopic characterization of the induced electronic phenomena9citations
  • 2005Mössbauer characterization of 57Fe dopant ions across the insulator-metal transition in ANi0.98Fe0.02O3 (A = Nd, Lu) perovskites.9citations

Places of action

Chart of shared publication
Shevelkov, Andrei V.
2 / 9 shared
Knotko, Alexander V.
1 / 2 shared
Lepnev, Leonid S.
1 / 1 shared
Grigorieva, Anastasia V.
1 / 2 shared
Umedov, Shodruz T.
1 / 1 shared
Charkin, Dmitri O.
1 / 3 shared
Kolesnikov, Efim
1 / 1 shared
Baranov, Alexey
5 / 6 shared
Demazeau, Gérard
6 / 18 shared
Gubaidulina, Tatyana V.
4 / 4 shared
Presniakov, Igor
6 / 6 shared
Rusakov, Viyacheslav S.
4 / 5 shared
Vasiliev, Alexander
1 / 4 shared
Martínez-Lope, M. J.
1 / 5 shared
Fernández-Díaz, M. T.
1 / 12 shared
Alonso, José A.
1 / 3 shared
Olenev, Andrei V.
1 / 1 shared
Kovnir, Kirill
1 / 13 shared
Grin, Yuri
1 / 25 shared
Tendeloo, Gustaaf Van
1 / 15 shared
Schnelle, Walter
1 / 20 shared
Baitinger, Michael
1 / 7 shared
Lebedev, Oleg I.
1 / 28 shared
Presniakov, Igor A.
1 / 7 shared
Prots, Yuri
1 / 1 shared
Pokholok, Konstantin
1 / 2 shared
Chart of publication period
2023
2009
2008
2007
2006
2005

Co-Authors (by relevance)

  • Shevelkov, Andrei V.
  • Knotko, Alexander V.
  • Lepnev, Leonid S.
  • Grigorieva, Anastasia V.
  • Umedov, Shodruz T.
  • Charkin, Dmitri O.
  • Kolesnikov, Efim
  • Baranov, Alexey
  • Demazeau, Gérard
  • Gubaidulina, Tatyana V.
  • Presniakov, Igor
  • Rusakov, Viyacheslav S.
  • Vasiliev, Alexander
  • Martínez-Lope, M. J.
  • Fernández-Díaz, M. T.
  • Alonso, José A.
  • Olenev, Andrei V.
  • Kovnir, Kirill
  • Grin, Yuri
  • Tendeloo, Gustaaf Van
  • Schnelle, Walter
  • Baitinger, Michael
  • Lebedev, Oleg I.
  • Presniakov, Igor A.
  • Prots, Yuri
  • Pokholok, Konstantin
OrganizationsLocationPeople

article

Controlled Reduction of Sn4+ in the Complex Iodide Cs2SnI6 with Metallic Gallium

  • Shevelkov, Andrei V.
  • Knotko, Alexander V.
  • Lepnev, Leonid S.
  • Grigorieva, Anastasia V.
  • Umedov, Shodruz T.
  • Charkin, Dmitri O.
  • Kolesnikov, Efim
  • Sobolev, Alexey
Abstract

<jats:p>Metal gallium as a low-melting solid was applied in a mixture with elemental iodine to substitute tin(IV) in a promising light-harvesting phase of Cs2SnI6 by a reactive sintering method. The reducing power of gallium was applied to influence the optoelectronic properties of the Cs2SnI6 phase via partial reduction of tin(IV) and, very likely, substitute partially Sn4+ by Ga3+. The reduction of Sn4+ to Sn2+ in the Cs2SnI6 phase contributes to the switching from p-type conductivity to n-type, thereby improving the total concentration and mobility of negative-charge carriers. The phase composition of the samples obtained was studied by X-ray diffraction (XRD) and 119Sn Mössbauer spectroscopy (MS). It is shown that the excess of metal gallium in a reaction melt leads to the two-phase product containing Cs2SnI6 with Sn4+ and β-CsSnI3 with Sn2+. UV–visible absorption spectroscopy shows a high absorption coefficient of the composite material.</jats:p>

Topics
  • impedance spectroscopy
  • mobility
  • x-ray diffraction
  • melt
  • reactive
  • composite
  • mass spectrometry
  • tin
  • sintering
  • Gallium
  • Mössbauer spectroscopy