Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kadian, Varsha

  • Google
  • 2
  • 8
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Comparative evaluation of dithranol-loaded nanosponges fabricated by solvent evaporation technique and melt method8citations
  • 2022Formulation, Characterization, Anti-Inflammatory and Cytotoxicity Study of Sesamol-Laden Nanosponges13citations

Places of action

Chart of shared publication
Dalal, Pooja
2 / 2 shared
Kumar, Sunil
2 / 14 shared
Rao, Rekha
2 / 2 shared
Kapoor, Archana
2 / 2 shared
Attimarad, Mahesh
1 / 1 shared
Elsewedy, Heba
1 / 1 shared
Sreeharsha, Nagaraja
1 / 2 shared
Garg, Minakshi
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Dalal, Pooja
  • Kumar, Sunil
  • Rao, Rekha
  • Kapoor, Archana
  • Attimarad, Mahesh
  • Elsewedy, Heba
  • Sreeharsha, Nagaraja
  • Garg, Minakshi
OrganizationsLocationPeople

article

Formulation, Characterization, Anti-Inflammatory and Cytotoxicity Study of Sesamol-Laden Nanosponges

  • Dalal, Pooja
  • Kumar, Sunil
  • Rao, Rekha
  • Kapoor, Archana
  • Kadian, Varsha
  • Attimarad, Mahesh
  • Elsewedy, Heba
  • Sreeharsha, Nagaraja
  • Garg, Minakshi
Abstract

<jats:p>Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into β-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (−17 to −26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (β-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 μg/mL) in comparison to SES (106 μg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • scanning electron microscopy
  • thermogravimetry
  • Fourier transform infrared spectroscopy
  • polydispersity
  • secondary electron spectroscopy