People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Enculescu, Monica
National Institute of Materials Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devicescitations
- 2023Microengineering Design for Advanced W-Based Bulk Materials with Improved Propertiescitations
- 2022Processing Effects on the Martensitic Transformation and Related Properties in the Ni55Fe18Nd2Ga25 Ferromagnetic Shape Memory Alloycitations
- 2022Kinetics and the Effect of Thermal Treatments on the Martensitic Transformation and Magnetic Properties in Ni49Mn32Ga19 Ferromagnetic Shape Memory Ribbonscitations
- 2021Magnetic and Magnetostrictive Properties of Ni50Mn20Ga27Cu3 Rapidly Quenched Ribbonscitations
- 2020Graphene oxide concentration effect on the optoelectronic properties of ZnO/GO nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Processing Effects on the Martensitic Transformation and Related Properties in the Ni55Fe18Nd2Ga25 Ferromagnetic Shape Memory Alloy
Abstract
<jats:p>The influence of processing on the martensitic transformation and related magnetic properties of the Ni55Fe18Nd2Ga25 ferromagnetic shape memory alloy, as bulk and ribbons prepared by the melt spinning method and subjected to different thermal treatments, is investigated. Structural, calorimetric, and magnetic characterizations are performed. Thermal treatment at 1173 K induces a decrease in both the Curie and the martensitic transformation temperatures, while a treatment at 673 K produces the structural ordering of the ribbons, hence an increase in TC. A maximum value of the magnetic entropy variation of −5.41 J/kgK was recorded at 310 K for the as quenched ribbons. The evaluation of the magnetoresistive effect shows a remarkable value of −13.5% at 275 K on the bulk sample, which is much higher than in the ribbons.</jats:p>