Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahi, Mohammed El

  • Google
  • 2
  • 9
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023BaTiO3 Functional Perovskite as Photocathode in Microbial Fuel Cells for Energy Production and Wastewater Treatment10citations
  • 2022ZrP2O7 as a Cathodic Material in Single-Chamber MFC for Bioenergy Production10citations

Places of action

Chart of shared publication
Toyir, Jamil
1 / 1 shared
Touach, Noureddine
2 / 2 shared
Lotfi, El Mostapha
2 / 2 shared
Labjar, Najoua
2 / 3 shared
Hamdouni, Youssra El
1 / 1 shared
Kacimi, Mohamed
2 / 4 shared
Hamidi, Adnane El
1 / 3 shared
Mahir, Hanane
1 / 1 shared
Elhamdouni, Youssra
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Toyir, Jamil
  • Touach, Noureddine
  • Lotfi, El Mostapha
  • Labjar, Najoua
  • Hamdouni, Youssra El
  • Kacimi, Mohamed
  • Hamidi, Adnane El
  • Mahir, Hanane
  • Elhamdouni, Youssra
OrganizationsLocationPeople

article

ZrP2O7 as a Cathodic Material in Single-Chamber MFC for Bioenergy Production

  • Hamidi, Adnane El
  • Touach, Noureddine
  • Lotfi, El Mostapha
  • Mahir, Hanane
  • Elhamdouni, Youssra
  • Labjar, Najoua
  • Mahi, Mohammed El
  • Kacimi, Mohamed
Abstract

<jats:p>The present work is the first investigation of the electrocatalytic performances of ZrP2O7 as a cathode in a single-chamber Microbial Fuel Cell (MFC) for the conversion of chemical energy from wastewater to bioelectricity. This catalyst was prepared by a coprecipitation method, then characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), ultraviolet–visible–near-infrared spectrophotometry (UV–Vis–NIR), and cyclic voltammetry analyses. The acid–basic characteristics of the surface were probed by using 2-butanol decomposition. The conversion of 2-butanol occurs essentially through the dehydrating reaction, indicating the predominantly acidic character of the solid. The electrochemical test shows that the studied cathode material is electroactive. In addition, the ZrP2O7 in the MFC configuration exhibited high performance in terms of bioelectricity generation, giving a maximum output power density of around 449 mW m−2; moreover, it was active for wastewater treatment, reducing the chemical oxygen demand (COD) charge to 50% after three days of reaction.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy
  • cyclic voltammetry
  • decomposition
  • spectrophotometry