People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amati, Matteo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25r0.5 Mn0.5O3±delta
- 2023Spatially‐Modulated Silicon Interface Energetics Via Hydrogen Plasma‐Assisted Atomic Layer Deposition of Ultrathin Aluminacitations
- 2022Synthesis and characterization of MWCNT-COOH/Fe3O4 and CNT-COOH/Fe3O4/NiO nanocomposites: assessment of adsorption and photocatalytic performancecitations
- 2020Atomic and electronic structure of a multidomain GeTe crystalcitations
- 2018Depth-Dependent Scanning Photoelectron Microspectroscopy Unravels the Mechanism of Dynamic Pattern Formation in Alloy Electrodepositioncitations
- 2017An in situ near-ambient pressure X-ray photoelectron spectroscopy study of CO2 reduction at Cu in a SOE cellcitations
- 2017Low temperature growth of fully covered single-layer graphene using a CoCu catalystcitations
- 2017Low temperature growth of fully covered single-layer graphene using a CoCu catalyst.
- 2017An in situ near-ambient pressure X-ray photoelectron spectroscopy study of CO 2 reduction at Cu in a SOE cellcitations
- 2016Fabrication of Ti substrate grain dependent C/TiO2 composites through carbothermal treatment of anodic TiO2citations
- 2015Tuning electronic properties of carbon nanotubes by nitrogen grafting: Chemistry and chemical stabilitycitations
- 2013Tubular Sn-filled carbon nanostructures on ITO: Nanocomposite material for multiple applicationscitations
- 2013Tubular Sn-filled carbon nanostructures on ITO: Nanocomposite material for multiple applicationscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of MWCNT-COOH/Fe3O4 and CNT-COOH/Fe3O4/NiO nanocomposites: assessment of adsorption and photocatalytic performance
Abstract
In this study the adsorption and photodegradation capabilities of modified multi-walled carbon nanotubes (MWCNTs), using tartrazine as a model pollutant, is demonstrated. MWCNT-COOH/Fe3O4 and MWCNT-COOH/Fe3O4/NiO nanocomposites were prepared by precipitation of metal oxides in the presence of MWCNTs. Their properties were examined by X-ray diffraction in powder (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, synchrotron-based Scanning PhotoElectron Microscopy (SPEM), and Brunauer-Emmett-Teller (BET) analysis. It was found that the optimal adsorption conditions were pH 4 for MWCNT-COOH/Fe3O4 and pH 3 for MWCNT-COOH/Fe3O4/NiO, temperature 25 degrees C, adsorbent dose 1 g L-1, initial concentration of tartrazine 5 mg L-1 for MWCNT-COOH/Fe3O4 and 10 mg L-1 for MWCNT-COOH/Fe3O4/NiO and contact time 5 min for MWCNT-COOH/Fe3O4/NiO and 15 min for MWCNT-COOH/Fe3O4. Moreover, the predominant degradation process was elucidated simultaneously, with and without simulated sunlight irradiation, using thermal lens spectrometry (TLS) and UV-Vis absorption spectrophotometry. The results indicated the prevalence of the photodegradation mechanism over adsorption from the beginning of the degradation process.