Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bașliu, Vasile

  • Google
  • 1
  • 5
  • 0

"Dunarea de Jos" University of Galati

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Nanostructuring Effect of Nano-CeO2 Particles Reinforcing Cobalt Matrix during Electrocodeposition Processcitations

Places of action

Chart of shared publication
Nicoleta, Simionescu
1 / 5 shared
Buruiana, Daniela Laura
1 / 3 shared
Nicoleta, Bogatu
1 / 1 shared
Benea, Lidia
1 / 14 shared
Celis, Jean-Pierre
1 / 59 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Nicoleta, Simionescu
  • Buruiana, Daniela Laura
  • Nicoleta, Bogatu
  • Benea, Lidia
  • Celis, Jean-Pierre
OrganizationsLocationPeople

article

Nanostructuring Effect of Nano-CeO2 Particles Reinforcing Cobalt Matrix during Electrocodeposition Process

  • Bașliu, Vasile
  • Nicoleta, Simionescu
  • Buruiana, Daniela Laura
  • Nicoleta, Bogatu
  • Benea, Lidia
  • Celis, Jean-Pierre
Abstract

<jats:p>The electrodeposition method was used to obtain nanostructured layers of Co/nano-CeO2 on 304L stainless steel, from a cobalt electrolyte in which different concentrations of CeO2 nanoparticles (0, 10, 20, and 30 g/L) were dispersed. The electrodeposition was performed at room temperature using three current densities (23, 48, and 72 mA cm−2), and the time was kept constant at 90 min. The influence of current densities and nanoparticle concentrations on the characteristics of the obtained nanostructured layers is also discussed. An X-ray diffractometer (XRD) was used to investigate the phase structure and cobalt crystallite size of the nanostructured layers, and a contact angle (sessile drop method) was used to assess the wettability of the electrodeposited layers. The roughness of the surfaces was also studied. The results show that the nanostructured layers became more hydrophilic with increasing nanoparticle concentration and increasing current density. In the case of pure cobalt deposits, an increase in the current density led to an increase in the size of the cobalt crystallites in the electrodeposited layer, while for the Co/nano-CeO2 nanostructured layers, the size of the crystallites decreased with increasing current density. This confirms the nanostructuring effect of nano-CeO2 electrocodeposited with cobalt.</jats:p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • surface
  • stainless steel
  • phase
  • x-ray diffraction
  • cobalt
  • current density
  • electrodeposition