Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Majcherkiewicz, Julia Natalia

  • Google
  • 2
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Transition metal oxide nanocrystals and their interaction with light or with an alternating magnetic field ; Nanocristales de óxidos de metales de transición y su interacción con la luz o con un campo magnético alterno ; Nanocristais de óxidos de metais de transición e a súa interacción coa luz ou cun campo magnético alternocitations
  • 2022Synergistic Interaction of Clusters of Iron Oxide Nanoparticles and Reduced Graphene Oxide for High Supercapacitor Performance15citations

Places of action

Chart of shared publication
Nóvoa, X. Ramón
1 / 4 shared
Puértolas Lacambra, Begoña
1 / 1 shared
Salgueiriño, Veronica
1 / 1 shared
Correa-Duarte, Miguel A.
1 / 8 shared
Elsaidy, Amir
1 / 2 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Nóvoa, X. Ramón
  • Puértolas Lacambra, Begoña
  • Salgueiriño, Veronica
  • Correa-Duarte, Miguel A.
  • Elsaidy, Amir
OrganizationsLocationPeople

article

Synergistic Interaction of Clusters of Iron Oxide Nanoparticles and Reduced Graphene Oxide for High Supercapacitor Performance

  • Nóvoa, X. Ramón
  • Majcherkiewicz, Julia Natalia
  • Puértolas Lacambra, Begoña
  • Salgueiriño, Veronica
  • Correa-Duarte, Miguel A.
  • Elsaidy, Amir
Abstract

<jats:p>Supercapacitors have been recognized as one of the more promising energy storage devices, with great potential use in portable electronics and hybrid vehicles. In this study, a composite made of clusters of iron oxide (Fe3O4-γFe2O3) nanoparticles and reduced graphene oxide (rGO) has been developed through a simple one-step solvothermal synthesis method for a high-performance supercapacitor electrode. Electrochemical assessment via cyclic voltammetry, galvanostatic charge–discharge experiments, and electrochemical impedance spectroscopy (EIS) revealed that the Fe3O4-γFe2O3/rGO nanocomposite showed much higher specific capacitance than either rGO or bare clusters of Fe3O4-γFe2O3 nanoparticles. In particular, specific capacitance values of 100 F g−1, 250 F g−1, and 528 F g−1 were obtained for the clusters of iron oxide nanoparticles, rGO, and the hybrid nanostructure, respectively. The enhancement of the electrochemical performance of the composite material may be attributed to the synergistic interaction between the layers of graphene oxide and the clusters of iron oxide nanoparticles. The intimate contact between the two phases eliminates the interface, thus enabling facile electron transport, which is key to attaining high specific capacitance and, consequently, enhanced charge–discharge time. Performance evaluation in consecutive cycles has demonstrated that the composite material retains 110% of its initial capacitance after 3000 cycles, making it a promising candidate for supercapacitors.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • cluster
  • phase
  • experiment
  • iron
  • electrochemical-induced impedance spectroscopy
  • cyclic voltammetry