Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Teselko, Petro

  • Google
  • 1
  • 7
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Reaction Sintering of Machinable TiB2-BN-C Ceramics with In-Situ Formed h-BN Nanostructure5citations

Places of action

Chart of shared publication
Popov, Oleksii
1 / 6 shared
Vishnyakov, Vm
1 / 30 shared
Kutzhanov, Magzhan K.
1 / 1 shared
Shtansky, Dmitry V.
1 / 9 shared
Polishchuk, Sergey
1 / 1 shared
Permyakova, Elizaveta S.
1 / 2 shared
Klepko, Oleksandra
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Popov, Oleksii
  • Vishnyakov, Vm
  • Kutzhanov, Magzhan K.
  • Shtansky, Dmitry V.
  • Polishchuk, Sergey
  • Permyakova, Elizaveta S.
  • Klepko, Oleksandra
OrganizationsLocationPeople

article

Reaction Sintering of Machinable TiB2-BN-C Ceramics with In-Situ Formed h-BN Nanostructure

  • Popov, Oleksii
  • Vishnyakov, Vm
  • Kutzhanov, Magzhan K.
  • Shtansky, Dmitry V.
  • Polishchuk, Sergey
  • Teselko, Petro
  • Permyakova, Elizaveta S.
  • Klepko, Oleksandra
Abstract

<p>Soft TiB<sub>2</sub>-BN-C hetero-modulus ceramics were sintered with the assistance of in-situ reactions during the hot pressing of TiN-B<sub>4</sub> C precursors. TiB<sub>2</sub> formation was observed already after the hot pressing at 1100<sup>◦</sup> C, remaining the only phase identifiable by XRD even after sintering at 1500<sup>◦</sup> C. Analysis of reaction kinetics allows us to assume that the most probable reaction controlling stage is boron atoms sublimation and gas phase transfer from B<sub>4</sub> C to TiN. Reactive sintering route allows almost full densification of TiB<sub>2</sub>-BN-C composite ceramics at 1900<sup>◦</sup> C. The processes enable the formation of multilayer h-BN nanosheets inside the TiB<sub>2</sub> matrix. The manufactured TiB<sub>2</sub>-33BN-13C ceramic with K<sub>1C</sub> = 5.3 MPa·m<sup>1/2</sup> and H<sub>V</sub> = 1.6 GPa is extremely thermal shock-resistant at least up to quenching temperature differential of 800<sup>◦</sup> C. The sintered UHTC composite can be machined into complex geometry components.</p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • reactive
  • composite
  • Boron
  • ceramic
  • gas phase
  • tin
  • sintering
  • densification
  • quenching
  • hot pressing