People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pimentel, Ana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purificationcitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2019Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin filmscitations
- 2019Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin filmscitations
- 2019Tailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediationcitations
- 2016Photocatalytic behavior of TiO2 films synthesized by microwave irradiationcitations
- 2015Morphological and optical characterization of transparent thin films obtained at low temperature using ZnO nanoparticles
- 2010Manganese nitrate impregnation cycles optimization by addition of surfactants on Ta capacitors with high charge powders (>80000μC/G) manufacturing
- 2009Zinc oxide, a multifunctional material: from material to device applicationscitations
- 2008Effect of annealing on molybdenum doped indium oxide thin films RF sputtered at room temperaturecitations
- 2008Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applicationscitations
- 2006Electron transport and optical characteristics in amorphous indium zinc oxide filmscitations
- 2006Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devicescitations
- 2005A Study on the Electrical Properties of ZnO Based Transparent TFTscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification
Abstract
In this study, polyethylene glycol-modified titanium dioxide (PEG-modified TiO2) nanopowders were prepared using a fast solvothermal method under microwave irradiation, and without any further calcination processes. These nanopowders were further impregnated on porous polymeric platforms by drop-casting. The effect of adding iron with different molar ratios (1, 2, and 5%) of iron precursor was investigated. The characterization of the produced materials was carried out by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Optical characterization of all the materials was also carried out. SEM showed that pure TiO2 and Fe-TiO2 nanostructures presented similar nanosized and spherical particles, which uniformly covered the substrates. From XRD, pure TiO2 anatase was obtained for all nanopowders produced, which was further confirmed by Raman spectroscopy on the impregnated substrates. XPS and UV–VIS absorption spectroscopy emission spectra revealed that the presence of Fe ions on the Fe-TiO2 nanostructures led to the introduction of new intermediate energy levels, as well as defects that contributed to an enhancement in the photocatalytic performance. The photocatalytic results under solar radiation demonstrated increased photocatalytic activity in the presence of the 5% Fe-TiO2 nanostructures (Rhodamine B degradation of 85% after 3.5 h, compared to 74% with pure TiO2 for the same exposure time). The photodegradation rate of RhB dye with the Fe-TiO2 substrate was 1.5-times faster than pure TiO2. Reusability tests were also performed. The approach developed in this work originated novel functionalized photocatalytic platforms, which were revealed to be promising for the removal of organic dyes from wastewater.