People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deuermeier, Jonas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2024Laser‑patterning bacterial nanocellulose for cell‑controlled interactioncitations
- 2024Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2024Laser-patterning bacterial nanocellulose for cell-controlled interactioncitations
- 2024Inkjet printed IGZO memristors with volatile and non-volatile switchingcitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2023Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2023The Role of Hydrogen Incorporation into Amorphous Carbon Films in the Change of the Secondary Electron Yieldcitations
- 2023The role of hydrogen incorporation into amorphous carbon films in the change of the secondary electron yieldcitations
- 2023Self-sensing metallic material based on PZT particles produced by friction stir processing envisaging structural health monitoring applicationscitations
- 2023Self-sensing metallic material based on PZT particles produced by friction stir processing envisaging structural health monitoring applicationscitations
- 2022High entropy alloy CrFeNiCoCu sputter deposited films: Structure, electrical properties, and oxidationcitations
- 2022High entropy alloy CrFeNiCoCu sputter deposited films: Structure, electrical properties, and oxidationcitations
- 2022Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purificationcitations
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022Bandlike Transport in FaPbBr3Quantum Dot Phototransistor with High Hole Mobility and Ultrahigh Photodetectivitycitations
- 2022Tailoring the Interface in High Performance Planar Perovskite Solar Cell by ZnOS Thin Filmcitations
- 2021Highly conductive grain boundaries in copper oxide thin films
- 2021Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxidecitations
- 2021Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxidecitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 20202D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodescitations
- 2019Electrochemical metallization ReRAMs (ECM) - Experiments and modellingcitations
- 2019Mapping the space charge carrier dynamics in plasmon-based perovskite solar cellscitations
- 2019Tailoring IGZO composition for enhanced fully solution-based thin film transistorscitations
- 2019Flexible and transparent ReRAM devices for system on panel (SOP) applicationcitations
- 2018Visualization of nanocrystalline CuO in the grain boundaries of Cu2O thin films and effect on band bending and film resistivitycitations
- 2018Green Nanotechnology from Waste Carbon-Polyaniline Compositecitations
- 2018Green Nanotechnology from Waste Carbon-Polyaniline Composite ; Generation of Wavelength-Independent Multiband Photoluminescence for Sensitive Ion Detectioncitations
- 2017Memristors using solution-based IGZO nanoparticlescitations
- 2017Origins of limited electrical performance of polycrystalline Cu2O thin-film transistors
- 2017Memristors Using Solution-Based IGZO Nanoparticlescitations
- 2016Effect of Mg doping on Cu2O thin films and their behavior on the TiO2/Cu2O heterojunction solar cellscitations
- 2016Highly conductive grain boundaries in copper oxide thin filmscitations
- 2016Substrate reactivity as the origin of Fermi level pinning at the Cu2O/ALD-Al2O3 interfacecitations
- 2013P-Type CuxO thin-film transistors produced by thermal oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification
Abstract
In this study, polyethylene glycol-modified titanium dioxide (PEG-modified TiO2) nanopowders were prepared using a fast solvothermal method under microwave irradiation, and without any further calcination processes. These nanopowders were further impregnated on porous polymeric platforms by drop-casting. The effect of adding iron with different molar ratios (1, 2, and 5%) of iron precursor was investigated. The characterization of the produced materials was carried out by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Optical characterization of all the materials was also carried out. SEM showed that pure TiO2 and Fe-TiO2 nanostructures presented similar nanosized and spherical particles, which uniformly covered the substrates. From XRD, pure TiO2 anatase was obtained for all nanopowders produced, which was further confirmed by Raman spectroscopy on the impregnated substrates. XPS and UV–VIS absorption spectroscopy emission spectra revealed that the presence of Fe ions on the Fe-TiO2 nanostructures led to the introduction of new intermediate energy levels, as well as defects that contributed to an enhancement in the photocatalytic performance. The photocatalytic results under solar radiation demonstrated increased photocatalytic activity in the presence of the 5% Fe-TiO2 nanostructures (Rhodamine B degradation of 85% after 3.5 h, compared to 74% with pure TiO2 for the same exposure time). The photodegradation rate of RhB dye with the Fe-TiO2 substrate was 1.5-times faster than pure TiO2. Reusability tests were also performed. The approach developed in this work originated novel functionalized photocatalytic platforms, which were revealed to be promising for the removal of organic dyes from wastewater.