Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ünlü, Feray

  • Google
  • 7
  • 35
  • 397

Helmholtz-Zentrum Berlin für Materialien und Energie

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Electrospun Electroluminescent CsPbBr3 Fibers as Flexible Perovskite Networks for Light‐Emitting Application11citations
  • 2022Electrospun Networks of ZnO-SnO2 Composite Nanowires as Electron Transport Materials for Perovskite Solar Cells9citations
  • 2022Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells12citations
  • 2022Thermally-induced drift of A-site cations at solid-solid interface in physically paired lead halide perovskites5citations
  • 2021Roadmap on organic-inorganic hybrid perovskite semiconductors and devices149citations
  • 2021Towards the environmentally friendly solution processing of metal halide perovskite technology62citations
  • 2021Roadmap on organic–inorganic hybrid perovskite semiconductors and devices149citations

Places of action

Chart of shared publication
Von Toperczer, Florian
1 / 1 shared
Fischer, Thomas
3 / 13 shared
Lindfors, Klas
1 / 2 shared
Mathur, Sanjay
6 / 36 shared
Lê, Khan
3 / 3 shared
Mathies, Florian
1 / 10 shared
Nandayapa, Edgar
1 / 3 shared
Paramasivam, Gopinath
1 / 9 shared
List-Kratochvil, Emil J. W.
1 / 23 shared
Irfan, Muhammad
1 / 16 shared
Ullah, Hameed
1 / 7 shared
Liu, Maning
1 / 28 shared
Deo, Meenal
1 / 2 shared
Möllmann, Alexander
1 / 2 shared
Ludwig, Tim
1 / 3 shared
Tachibana, Yasuhiro
1 / 6 shared
Kirchartz, Thomas
2 / 20 shared
Kulkarni, Ashish
1 / 5 shared
Stadler, Daniel
1 / 4 shared
Haddad, Jinane
1 / 1 shared
Bhardwaj, Aman
1 / 3 shared
Van Loosdrecht, Paul H. M.
1 / 2 shared
Wilhelm, Michael
1 / 5 shared
Grosch, Matthias
1 / 2 shared
Cuzzupe, Daniele T.
1 / 2 shared
Weißing, Rene
1 / 1 shared
Bernhardt, Robin
1 / 1 shared
Lupascu, Doru C.
2 / 11 shared
Lê, Khan Moritz Trong
2 / 2 shared
Fakharuddin, Azhar
2 / 19 shared
Dyakonov, Vladimir
2 / 20 shared
Schmidt-Mende, Lukas
2 / 30 shared
Herz, Laura M.
2 / 35 shared
Olthof, Selina
2 / 14 shared
Karabanov, Andrei D.
2 / 3 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Von Toperczer, Florian
  • Fischer, Thomas
  • Lindfors, Klas
  • Mathur, Sanjay
  • Lê, Khan
  • Mathies, Florian
  • Nandayapa, Edgar
  • Paramasivam, Gopinath
  • List-Kratochvil, Emil J. W.
  • Irfan, Muhammad
  • Ullah, Hameed
  • Liu, Maning
  • Deo, Meenal
  • Möllmann, Alexander
  • Ludwig, Tim
  • Tachibana, Yasuhiro
  • Kirchartz, Thomas
  • Kulkarni, Ashish
  • Stadler, Daniel
  • Haddad, Jinane
  • Bhardwaj, Aman
  • Van Loosdrecht, Paul H. M.
  • Wilhelm, Michael
  • Grosch, Matthias
  • Cuzzupe, Daniele T.
  • Weißing, Rene
  • Bernhardt, Robin
  • Lupascu, Doru C.
  • Lê, Khan Moritz Trong
  • Fakharuddin, Azhar
  • Dyakonov, Vladimir
  • Schmidt-Mende, Lukas
  • Herz, Laura M.
  • Olthof, Selina
  • Karabanov, Andrei D.
OrganizationsLocationPeople

article

Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells

  • Liu, Maning
  • Deo, Meenal
  • Möllmann, Alexander
  • Mathur, Sanjay
  • Ludwig, Tim
  • Tachibana, Yasuhiro
  • Kirchartz, Thomas
  • Kulkarni, Ashish
  • Stadler, Daniel
  • Ünlü, Feray
  • Haddad, Jinane
  • Bhardwaj, Aman
Abstract

Electron transporting layers facilitating electron extraction and suppressing hole recombination at the cathode are crucial components in any thin-film solar cell geometry, including that of metal–halide perovskite solar cells. Amorphous tantalum oxide (Ta2O5) deposited by spin coating was explored as an electron transport material for perovskite solar cells, achieving power conversion efficiency (PCE) up to ~14%. Ultraviolet photoelectron spectroscopy (UPS) measurements revealed that the extraction of photogenerated electrons is facilitated due to proper alignment of bandgap energies. Steady-state photoluminescence spectroscopy (PL) verified efficient charge transport from perovskite absorber film to thin Ta2O5 layer. Our findings suggest that tantalum oxide as an n-type semiconductor with a calculated carrier density of ~7 × 1018/cm3 in amorphous Ta2O5 films, is a potentially competitive candidate for an electron transport material in perovskite solar cells.

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • amorphous
  • extraction
  • tantalum
  • power conversion efficiency
  • ultraviolet photoelectron spectroscopy
  • spin coating
  • n-type semiconductor