People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vieira, Mt
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Joining of Ti6Al4V to Al2O3 Using Nanomultilayerscitations
- 2021Diffusion Bonding of Ti6Al4V to Al2O3 Using Ni/Ti Reactive Multilayerscitations
- 2020Effect of Deposition Parameters on the Reactivity of Al/Ni Multilayer Thin Filmscitations
- 2017In the search of nanocrystallinity in tool-steel chipscitations
- 2013Optimization of "feedstocks" for replicative process in micromanufacturing
- 2012Comparison of deposited surface area of airborne ultrafine particles generated from two welding processescitations
Places of action
Organizations | Location | People |
---|
article
Joining of Ti6Al4V to Al2O3 Using Nanomultilayers
Abstract
Diffusion bonding of Ti6Al4V to Al2O3 using Ni/Ti reactive nanomultilayers as interlayer material was investigated. For this purpose, Ni/Ti multilayer thin films with 12, 25, and 60 nm modulation periods (bilayer thickness) were deposited by d.c. magnetron sputtering onto the base materials' surface. The joints were processed at 750 and 800 degrees C with a dwell time of 60 min and under a pressure of 5 MPa. Microstructural characterization of the interfaces was conducted by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation, and hardness and reduced Young's modulus distribution maps were obtained across the interfaces. The joints processed at 800 degrees C using the three modulation periods were successful, showing the feasibility of using these nanolayered films to improve the diffusion bonding of dissimilar materials. Using modulation periods of 25 and 60 nm, it was also possible to reduce the bonding temperature to 750 degrees C and obtain a sound interface. The interfaces are mainly composed of NiTi and NiTi2 phases. The nanoindentation experiments revealed that the hardness and reduced Young's modulus at the interfaces reflect the observed microstructure.