People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Begum, Bushra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Polyindole Embedded Nickel/Zinc Oxide Nanocomposites for High-Performance Energy Storage Applicationscitations
- 2022Synthesis, Characterization and Electrochemical Performance of a Redox-Responsive Polybenzopyrrole@Nickel Oxide Nanocomposite for Robust and Efficient Faraday Energy Storagecitations
- 2021Physical, Chemical, and Electrochemical Properties of Redox-Responsive Polybenzopyrrole as Electrode Material for Faradaic Energy Storagecitations
- 2021Kinetics of the oxidation of iodide by dicyanobis(phenanthroline)iron(III) in a binary solvent systemcitations
- 2020Tunable electrochemical activity of polyaniline salt by doping anion exchangecitations
Places of action
Organizations | Location | People |
---|
article
Synthesis, Characterization and Electrochemical Performance of a Redox-Responsive Polybenzopyrrole@Nickel Oxide Nanocomposite for Robust and Efficient Faraday Energy Storage
Abstract
A polybenzopyrrole@nickel oxide (Pbp@NiO) nanocomposite was synthesized by an oxidative chemical one-pot method and tested as an active material for hybrid electrodes in an electrochemical supercapattery device. The as-prepared composite material exhibits a desirable 3D cross-linked nanostructured morphology and a synergistic effect between the polymer and metal oxide, which improved both physical properties and electrochemical performance. The unprocessed material was characterized by X-ray diffraction, FTIR and UV–Vis spectroscopy, scanning electron microscopy/energy disperse X-ray analysis, and thermogravimetry. The nanocomposite material was deposited without a binder on gold current collectors and investigated for electrochemical behavior and performance in a symmetrical two- and three-electrode cell setup. A high specific capacity of up to 105 C g$^{-1}$ was obtained for the Pbp@NiO-based electrodes with a gravimetric energy density of 17.5 Wh kg$^{-1}$, a power density of 1,925 W kg$^{-1}$, and excellent stability over 10,000 cycles.