People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seide, Gunnar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Synthesis, mechanical characterisation and modeling of super flexible silica aerogels and their joining techniques
- 2022Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fiberscitations
- 2022Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additivescitations
- 2020The effect of additives and process parameters on the pilot-scale manufacturing of polylactic acid sub-microfibers by melt electrospinningcitations
- 2020The Effect of Dye and Pigment Concentrations on the Diameter of Melt-Electrospun Polylactic Acid Fiberscitations
- 2020Pilot-scale production of polylactic acid nanofibers by melt electrospinningcitations
- 2019Novel Bicomponent Functional Fibers with Sheath/Core Configuration Containing Intumescent Flame-Retardants for Textile Applicationscitations
- 2019Pilot-scale fabrication and analysis of graphene-nanocomposite fiberscitations
- 2019The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnabilitycitations
- 2019From Lab to Pilot Scale: Melt Electrospun Nanofibers of Polypropylene with Conductive Additives
- 2019Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formationcitations
Places of action
Organizations | Location | People |
---|
article
Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fibers
Abstract
Melt electrospinning is a polymer processing technology for the manufacture of microfibers and nanofibers. Additives are required to reduce the melt viscosity and increase its conductivity in order to minimize the fiber diameter, and can also impart additional beneficial properties. We investigated the preparation of polybutylene succinate (PBS) microfibers incorporating different weight percentages of two multifunctional additives (the organic dye curcumin and inorganic silver nanoparticles) using a single-nozzle laboratory-scale device. We determined the influence of these additives on the polymer melt viscosity, electrical conductivity, degradation profile, thermal behavior, fiber diameter, and antibacterial activity. The formation of a Taylor cone followed by continuous fiber deposition was observed for compounds containing up to 3% (w/w) silver nanoparticles and up to 10% (w/w) curcumin, the latter achieving the minimum average fiber diameter of 12.57 mu m. Both additives reduced the viscosity and increased the electrical conductivity of the PBS melt, and also retained their specific antibacterial properties when compounded and spun into fibers. This is the first report describing the effect of curcumin and silver nanoparticles on the properties of PBS fibers manufactured using a single-nozzle melt-electrospinning device. Our results provide the basis to develop environmentally benign antibacterial melt-electrospun PBS fibers for biomedical applications.