Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Herrera-May, Al

  • Google
  • 6
  • 31
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Green Route to Produce Silver Nanoparticles Using the Bioactive Flavonoid Quercetin as a Reducing Agent and Food Anti-Caking Agents as Stabilizers9citations
  • 2022Estimation of the Young’s Modulus of Nanometer-Thick Films Using Residual Stress-Driven Bilayer Cantilevers2citations
  • 2021Structural Analysis of a Barge Midship Section Considering the Still Water and Wave Load Effects15citations
  • 2021Sustainable Development of Concrete through Aggregates and Innovative Materials: A Review50citations
  • 2020Synthesis and Characterization of Thin TiO2 Films Using the Sol-gel dip Coating Method2citations
  • 2020Algorithm for automatic detection and measurement of Vickers indentation hardness using image processing8citations

Places of action

Chart of shared publication
Peña-Juarez, Mg
1 / 1 shared
Delgado-Alvarado, E.
1 / 1 shared
Sanchez-Vargas, Lo
1 / 1 shared
Gonzalez-Calderon, Ja
1 / 1 shared
Ramírez-Rosas, Sl
1 / 1 shared
López-Huerta, F.
2 / 2 shared
Raskin, J.
1 / 2 shared
Aguilera-Cortés, La
1 / 1 shared
Velosa-Moncada, La
1 / 1 shared
Hernández-Hernández, J.
1 / 1 shared
Salazar-Domínguez, Cm
1 / 1 shared
Iturbe-Rosas, Ge
1 / 1 shared
Rosas-Huerta, Ed
1 / 1 shared
Yelmi-Carrillo, E.
1 / 1 shared
Melendez-Armenta, Ra
1 / 1 shared
Manzano-Huerta, E.
1 / 1 shared
Salgado-Estrada, R.
1 / 1 shared
Sandoval-Herazo, Lc
1 / 1 shared
Zamora-Castro, Sa
1 / 1 shared
Guarneros-Aguilar, C.
1 / 1 shared
Argüelles-Lucho, P.
1 / 1 shared
Cervantes, B.
1 / 2 shared
García-González, L.
2 / 3 shared
Woo-Garcia, Rm
1 / 1 shared
Domínguez-Nicolas, Sm
1 / 1 shared
Zamora-Peredo, L.
1 / 2 shared
Morales-González, Ea
1 / 1 shared
Martínez-Castillo, J.
1 / 1 shared
Escobar-Pérez, A.
1 / 1 shared
Hernández-Torres, J.
1 / 3 shared
Cerón-Álvarez, Ca
1 / 1 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Peña-Juarez, Mg
  • Delgado-Alvarado, E.
  • Sanchez-Vargas, Lo
  • Gonzalez-Calderon, Ja
  • Ramírez-Rosas, Sl
  • López-Huerta, F.
  • Raskin, J.
  • Aguilera-Cortés, La
  • Velosa-Moncada, La
  • Hernández-Hernández, J.
  • Salazar-Domínguez, Cm
  • Iturbe-Rosas, Ge
  • Rosas-Huerta, Ed
  • Yelmi-Carrillo, E.
  • Melendez-Armenta, Ra
  • Manzano-Huerta, E.
  • Salgado-Estrada, R.
  • Sandoval-Herazo, Lc
  • Zamora-Castro, Sa
  • Guarneros-Aguilar, C.
  • Argüelles-Lucho, P.
  • Cervantes, B.
  • García-González, L.
  • Woo-Garcia, Rm
  • Domínguez-Nicolas, Sm
  • Zamora-Peredo, L.
  • Morales-González, Ea
  • Martínez-Castillo, J.
  • Escobar-Pérez, A.
  • Hernández-Torres, J.
  • Cerón-Álvarez, Ca
OrganizationsLocationPeople

article

Estimation of the Young’s Modulus of Nanometer-Thick Films Using Residual Stress-Driven Bilayer Cantilevers

  • Herrera-May, Al
  • López-Huerta, F.
  • Raskin, J.
  • Aguilera-Cortés, La
  • Velosa-Moncada, La
Abstract

<jats:p>Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques that consider size effects and fabrication-related issues. Here, we propose a test methodology to estimate the Young’s modulus of nanometer-thick films using micromachined bilayer cantilevers. The bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the relief of the residual stresses generated during the fabrication process. The mechanical relationship between the measured residual stresses and the corresponding deflections was used to characterize the tested film. Residual stresses and deflections were related using analytical and finite element models that consider intrinsic stress gradients and the use of adherence layers. The proposed methodology was applied to low pressure chemical vapor deposited silicon nitride tested films with thicknesses ranging from 46 nm to 288 nm. The estimated Young’s modulus values varying between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic stress gradient of the materials was confirmed. The proposed methodology is simple and can be used to characterize diverse materials deposited under different fabrication conditions.</jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • nitride
  • nanoindentation
  • Silicon