People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lamprou, Dimitrios A.
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressingscitations
- 2023Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressingscitations
- 2023Urethane dimethacrylate-based photopolymerizable resins for stereolithography 3D printing: a physicochemical characterisation and biocompatibility evaluationcitations
- 20223D bioprinted scaffolds for diabetic wound healing applicationscitations
- 2022Stereolithography 3D printed implants: a preliminary investigation as potential local drug delivery systems to the earcitations
- 2022High spatial resolution ToF-SIMS imaging and image analysis strategies to monitor and quantify early phase separation in amorphous solid dispersionscitations
- 2022Fused deposition modeling 3D printing proof of concept study for personalised inner ear therapycitations
- 2021Fused deposition modelling for the development of drug loaded cardiovascular prosthesiscitations
- 2021Microfluidics Technology for the Design and Formulation of Nanomedicinescitations
- 2021Optimization of FDM 3D printing process parameters to produce haemodialysis curcumin-loaded vascular graftscitations
- 2021Microfluidics technology for the design and formulation of nanomedicinescitations
- 20203D printing of drug-loaded thermoplastic polyurethane meshes: A potential material for soft tissue reinforcement in vaginal surgerycitations
- 20193D printed microneedle patches using stereolithography (SLA) for intradermal insulin deliverycitations
- 2017Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repaircitations
- 2017A novel methodology to study polymodal particle size distributions produced during continuous wet granulationcitations
- 2017Probing polydopamine adhesion to protein and polymer films : microscopic and spectroscopic evaluation
- 2017Isatin thiosemicarbazones promote honeycomb structure formation in spin-coated polymer films: concentration effect and release studiescitations
- 2017Probing polydopamine adhesion to protein and polymer films: microscopic and spectroscopic evaluationcitations
- 2016A novel hot-melt extrusion formulation of albendazole for increasing dissolution propertiescitations
- 2016Isatin thiosemicarbazone-blended polymer films for biomedical applications : surface morphology, characterisation and preliminary biological assessmentcitations
- 2014The degradative effects of germicidal light on flexible endoscope material
- 2012Polymer templating of supercooled indomethacin for polymorph selectioncitations
Places of action
Organizations | Location | People |
---|
article
Microfluidics Technology for the Design and Formulation of Nanomedicines
Abstract
<jats:p>In conventional drug administration, drug molecules cross multiple biological barriers, distribute randomly in the tissues, and can release insufficient concentrations at the desired pathological site. Controlling the delivery of the molecules can increase the concentration of the drug in the desired location, leading to improved efficacy, and reducing the unwanted effects of the molecules under investigation. Nanoparticles (NPs), have shown a distinctive potential in targeting drugs due to their unique properties, such as large surface area and quantum properties. A variety of NPs have been used over the years for the encapsulation of different drugs and biologics, acting as drug carriers, including lipid-based and polymeric NPs. Applying NP platforms in medicines significantly improves the disease diagnosis and therapy. Several conventional methods have been used for the manufacturing of drug loaded NPs, with conventional manufacturing methods having several limitations, leading to multiple drawbacks, including NPs with large particle size and broad size distribution (high polydispersity index), besides the unreproducible formulation and high batch-to-batch variability. Therefore, new methods such as microfluidics (MFs) need to be investigated more thoroughly. MFs, is a novel manufacturing method that uses microchannels to produce a size-controlled and monodispersed NP formulation. In this review, different formulation methods of polymeric and lipid-based NPs will be discussed, emphasizing the different manufacturing methods and their advantages and limitations and how microfluidics has the capacity to overcome these limitations and improve the role of NPs as an effective drug delivery system.</jats:p>