Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cecchini, Raimondo

  • Google
  • 9
  • 36
  • 115

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Glassy Synaptic Time Dynamics in Molecular La0.7Sr0.3MnO/Gaq3/AlOx/Co Spintronic Crossbar Devices3citations
  • 2021Large Spin-to-Charge Conversion at Room Temperature in Extended Epitaxial Sb2Te3 Topological Insulator Chemically Grown on Silicon36citations
  • 2021Large spin-to-charge conversion at room temperature in extended epitaxial Sb2Te3 topological insulator chemically grown on Siliconcitations
  • 2021Phase Change Ge-Rich Ge–Sb–Te/Sb2Te3 Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition5citations
  • 2021Large-Area {MOVPE} Growth of Topological Insulator Bi2Te3 Epitaxial Layers on i-Si(111)11citations
  • 2019High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth14citations
  • 2018Weak Antilocalization in Granular Sb2Te3 Thin Films Deposited by MOCVD18citations
  • 2018Oxygen impurities link bistability and magnetoresistance in organic spin valves25citations
  • 2010Fabrication of nanopatterned metal layers on silicon by nanoindentation/nanoscratching and electrodeposition3citations

Places of action

Chart of shared publication
Graziosi, Patrizio
2 / 10 shared
Bergenti, Ilaria
2 / 5 shared
Rakshit, Rajib
1 / 2 shared
Shumilin, Andrei
1 / 1 shared
Prezioso, Mirko
1 / 1 shared
Singh, Manju
1 / 3 shared
Gnoli, Luca
1 / 1 shared
Dediu, Valentin
2 / 5 shared
Neha, Prakriti
1 / 1 shared
Gubbiotti, Gianluca
1 / 2 shared
Mantovan, Roberto
3 / 7 shared
Dimoulas, Athanasios
1 / 8 shared
Rimoldi, Martino
1 / 5 shared
Longo, Massimo
4 / 11 shared
Belli, Matteo
1 / 2 shared
Fanciulli, Marco
1 / 25 shared
Alia, Mario
1 / 2 shared
Tsipas, Polychronis
1 / 8 shared
Wiemer, Claudia
4 / 7 shared
Locatelli, Lorenzo
2 / 3 shared
Longo, Emanuele
1 / 2 shared
Kumar, Arun
1 / 21 shared
Lazzarini, Laura
3 / 5 shared
Martella, Christian
2 / 6 shared
Nasi, Lucia
3 / 5 shared
Lamperti, Alessio
1 / 4 shared
Nobili, Luca G.
1 / 1 shared
Gajjela, Rsr
1 / 4 shared
Calbucci, Marco
1 / 1 shared
Maclaren, Donald A.
1 / 18 shared
Rueff, Jean Pascal
1 / 2 shared
Borgatti, Francesco
1 / 15 shared
Giglia, Angelo
1 / 4 shared
Pasquali, Luca
1 / 9 shared
Céolin, Denis
1 / 1 shared
Riminucci, Alberto
1 / 5 shared
Chart of publication period
2024
2021
2019
2018
2010

Co-Authors (by relevance)

  • Graziosi, Patrizio
  • Bergenti, Ilaria
  • Rakshit, Rajib
  • Shumilin, Andrei
  • Prezioso, Mirko
  • Singh, Manju
  • Gnoli, Luca
  • Dediu, Valentin
  • Neha, Prakriti
  • Gubbiotti, Gianluca
  • Mantovan, Roberto
  • Dimoulas, Athanasios
  • Rimoldi, Martino
  • Longo, Massimo
  • Belli, Matteo
  • Fanciulli, Marco
  • Alia, Mario
  • Tsipas, Polychronis
  • Wiemer, Claudia
  • Locatelli, Lorenzo
  • Longo, Emanuele
  • Kumar, Arun
  • Lazzarini, Laura
  • Martella, Christian
  • Nasi, Lucia
  • Lamperti, Alessio
  • Nobili, Luca G.
  • Gajjela, Rsr
  • Calbucci, Marco
  • Maclaren, Donald A.
  • Rueff, Jean Pascal
  • Borgatti, Francesco
  • Giglia, Angelo
  • Pasquali, Luca
  • Céolin, Denis
  • Riminucci, Alberto
OrganizationsLocationPeople

article

Phase Change Ge-Rich Ge–Sb–Te/Sb2Te3 Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition

  • Cecchini, Raimondo
Abstract

<jats:p>Ge-rich Ge–Sb–Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge–Sb–Te/Sb2Te3 core-shell nanowires grown by metal-organic chemical vapor deposition. The core Ge-rich Ge–Sb–Te nanowires were self-assembled through the vapor–liquid–solid mechanism, catalyzed by Au nanoparticles on Si (100) and SiO2/Si substrates; conformal overgrowth of the Sb2Te3 shell was subsequently performed at room temperature to realize the core-shell heterostructures. Both Ge-rich Ge–Sb–Te core and Ge-rich Ge–Sb–Te/Sb2Te3 core-shell nanowires were extensively characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Raman microspectroscopy, and electron energy loss spectroscopy to analyze the surface morphology, crystalline structure, vibrational properties, and elemental composition.</jats:p>

Topics
  • nanoparticle
  • surface
  • compound
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • transmission electron microscopy
  • crystallization
  • chemical vapor deposition
  • electron energy loss spectroscopy
  • crystallization temperature