Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schilirò, Emanuela

  • Google
  • 1
  • 12
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Highly Homogeneous Current Transport in Ultra-Thin Aluminum Nitride (AlN) Epitaxial Films on Gallium Nitride (GaN) Deposited by Plasma Enhanced Atomic Layer Deposition6citations

Places of action

Chart of shared publication
Nigro, Raffaella Lo
1 / 2 shared
Pecz, Bela
1 / 8 shared
Fiorenza, Patrick
1 / 6 shared
Cora, Ildiko
1 / 5 shared
Greco, Giuseppe
1 / 1 shared
Roccaforte, Fabrizio
1 / 7 shared
Kruszewski, Piotr
1 / 1 shared
Prystawko, Paweł
1 / 1 shared
Leszczynski, Mike
1 / 1 shared
Giannazzo, Filippo
1 / 14 shared
Fogarassy, Zsolt
1 / 7 shared
Franco, Salvatore Di
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Nigro, Raffaella Lo
  • Pecz, Bela
  • Fiorenza, Patrick
  • Cora, Ildiko
  • Greco, Giuseppe
  • Roccaforte, Fabrizio
  • Kruszewski, Piotr
  • Prystawko, Paweł
  • Leszczynski, Mike
  • Giannazzo, Filippo
  • Fogarassy, Zsolt
  • Franco, Salvatore Di
OrganizationsLocationPeople

article

Highly Homogeneous Current Transport in Ultra-Thin Aluminum Nitride (AlN) Epitaxial Films on Gallium Nitride (GaN) Deposited by Plasma Enhanced Atomic Layer Deposition

  • Nigro, Raffaella Lo
  • Pecz, Bela
  • Fiorenza, Patrick
  • Cora, Ildiko
  • Schilirò, Emanuela
  • Greco, Giuseppe
  • Roccaforte, Fabrizio
  • Kruszewski, Piotr
  • Prystawko, Paweł
  • Leszczynski, Mike
  • Giannazzo, Filippo
  • Fogarassy, Zsolt
  • Franco, Salvatore Di
Abstract

<jats:p>This paper reports an investigation of the structural, chemical and electrical properties of ultra-thin (5 nm) aluminum nitride (AlN) films grown by plasma enhanced atomic layer deposition (PE-ALD) on gallium nitride (GaN). A uniform and conformal coverage of the GaN substrate was demonstrated by morphological analyses of as-deposited AlN films. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) analyses showed a sharp epitaxial interface with GaN for the first AlN atomic layers, while a deviation from the perfect wurtzite stacking and oxygen contamination were detected in the upper part of the film. This epitaxial interface resulted in the formation of a two-dimensional electron gas (2DEG) with a sheet charge density ns ≈ 1.45 × 1012 cm−2, revealed by Hg-probe capacitance–voltage (C–V) analyses. Nanoscale resolution current mapping and current–voltage (I–V) measurements by conductive atomic force microscopy (C-AFM) showed a highly homogeneous current transport through the 5 nm AlN barrier, while a uniform flat-band voltage (VFB ≈ 0.3 V) for the AlN/GaN heterostructure was demonstrated by scanning capacitance microscopy (SCM). Electron transport through the AlN film was shown to follow the Fowler–Nordheim (FN) tunneling mechanism with an average barrier height of &lt;ΦB&gt; = 2.08 eV, in good agreement with the expected AlN/GaN conduction band offset.</jats:p>

Topics
  • density
  • Oxygen
  • atomic force microscopy
  • aluminium
  • nitride
  • transmission electron microscopy
  • two-dimensional
  • Energy-dispersive X-ray spectroscopy
  • Gallium
  • atomic layer deposition