People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Loyer-Prost, Marie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2025Influence of injected ions on α’ formation under ion irradiation in Oxide Dispersion Strengthened Steelscitations
- 2024Accurate quantification of dislocation loops in complex functional alloys enabled by deep learning image analysiscitations
- 2023On the use of nanoscale multilayers to determine interdiffusion coefficients: comprehensive characterization of interdiffusion at low temperature in theNi-Cr systemcitations
- 2023Compact A15 Frank-Kasper nano-phases at the origin of dislocation loops in face-centred cubic metalscitations
- 2023Impact of micro-alloying in ion-irradiated nickel: From the inhibition of point-defect cluster diffusion by thermal segregation to the change of dislocation loop naturecitations
- 2023Impact of intragranular misorientation on void swelling and inter-granular cavities after ion irradiation in standard and additive manufacturing 316 L austenitic steelscitations
- 2022Effect of grain boundary planes on radiation-induced segregation (RIS) at near Σ3 grain boundaries in Fe-Cr alloy under ion irradiationcitations
- 2022Impact of the local microstructure fluctuations on radiation-induced segregation in dilute Fe-Ni and Ni-Ti model alloys: a combined modeling and experimental analysiscitations
- 2022Radiation-induced sharpening in Cr-Coated zirconium alloycitations
- 2021Impact of ion and neutron irradiation on the corrosion of the 6061-T6 aluminium alloy ; Influence de l'irradiation par ions et neutrons sur la corrosion de l'alliage d'aluminium 6061-T6citations
- 2021Impact of the microstructure on the swelling of aluminum alloys: characterization and modelling basescitations
- 2021Thermodynamic model for lattice point defect-mediated semi-coherent precipitation in alloyscitations
- 2021Nano-Structured Materials under Irradiation: Oxide Dispersion-Strengthened Steelscitations
- 2021Impact of ion and neutron irradiation on the corrosion of the 6061-T6 aluminium alloycitations
Places of action
Organizations | Location | People |
---|
article
Nano-Structured Materials under Irradiation: Oxide Dispersion-Strengthened Steels
Abstract
International audience ; Oxide dispersion-strengthened materials are reinforced by a (Y, Ti, O) nano-oxide dispersion and thus can be considered as nanostructured materials. In this alloy, most of the nanoprecipitates are (Y, Ti, O) nano-oxides exhibiting a Y$_{2}$Ti$_{2}$O$_{7}$ pyrochlore-like structure. However, the lattice structure of the smallest oxides is difficult to determine, but it is likely to be close to the atomic structure of the host matrix. Designed to serve in extreme environments—i.e., a nuclear power plant—the challenge for ODS steels is to preserve the nano-oxide dispersion under irradiation in order to maintain the excellent creep properties of the alloy in the reactor. Under irradiation, the nano-oxides exhibit different behaviour as a function of the temperature. At low temperature, the nano-oxides tend to dissolve owing to the frequent ballistic ejection of the solute atoms. At medium temperature, the thermal diffusion balances the ballistic dissolution, and the nano-oxides display an apparent stability. At high temperature, the nano-oxides start to coarsen, resulting in an increase in their size and a decrease in their number density. If the small nano-oxides coarsen through a radiation-enhanced Ostwald ripening mechanism, some large oxides disappear to the benefit of the small ones through a radiation-induced inverse Ostwald ripening. In conclusion, it is suggested that, under irradiation, the nano-oxide dispersion prevails over dislocations, grain boundaries and free surfaces to remove the point defects created by irradiation.