People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Şimăndan, Iosif - Daniel
National Institute of Materials Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Structural and optical properties of amorphous Si–Ge–Te thin films prepared by combinatorial sputteringcitations
- 2021Synthesis and Characterization of Cu2ZnSnS4 Thin Films Obtained by Combined Magnetron Sputtering and Pulsed Laser Depositioncitations
- 2021Influence of Deposition Method on the Structural and Optical Properties of Ge2Sb2Te5citations
- 2021The Effect of the Deposition Method on the Structural and Optical Properties of ZnS Thin Filmscitations
- 2020Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Filmscitations
- 2014Simulation of the structure of GeAs<sub>4</sub>Te<sub>7</sub> chalcogenide materials during memory switchingcitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and Characterization of Cu2ZnSnS4 Thin Films Obtained by Combined Magnetron Sputtering and Pulsed Laser Deposition
Abstract
<jats:p>Cu2ZnSnS4 (CZTS) is a complex quaternary material, and obtaining a single-phase CZTS with no secondary phases is known to be challenging and dependent on the production technique. This work involves the synthesis and characterization of CZTS absorber layers for solar cells. Thin films were deposited on Si and glass substrates by a combined magnetron sputtering (MS) and pulsed laser deposition (PLD) hybrid system, followed by annealing without and with sulfur powder at 500 °C under argon (Ar) flow. Three different Cu2S, SnS2, and ZnS targets were used each time, employing a different target for PLD and the two others for MS. The effect of the different target arrangements and the role of annealing and/or sulfurization treatment were investigated. The characterization of the absorber films was performed by grazing incidence X-ray diffraction (GIXRD), X-ray reflectometry (XRR), Raman spectroscopy, scanning electron microscopy, and regular transmission spectroscopy. The film with ZnS deposited by PLD and SnS2 and Cu2S by MS was found to be the best for obtaining a single CZTS phase, with uniform surface morphology, a nearly stoichiometric composition, and an optimal band gap of 1.40 eV. These results show that a new method that combines the advantages of both MS and PLD techniques was successfully used to obtain single-phase Cu2ZnSnS4 films for solar cell applications.</jats:p>