Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Folaranmi, Gbenro

  • Google
  • 2
  • 5
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Synthesis and Characterization of Activated Carbon Co-Mixed Electrospun Titanium Oxide Nanofibers as Flow Electrode in Capacitive Deionization8citations
  • 2021Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization22citations

Places of action

Chart of shared publication
Bechelany, Mikhael
1 / 109 shared
Sistat, Philippe
1 / 1 shared
Cretin, Marc
1 / 20 shared
Zaviska, Francois
1 / 1 shared
Tauk, Myriam
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Bechelany, Mikhael
  • Sistat, Philippe
  • Cretin, Marc
  • Zaviska, Francois
  • Tauk, Myriam
OrganizationsLocationPeople

article

Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization

  • Folaranmi, Gbenro
Abstract

<jats:p>Capacitive deionization is a second-generation water desalination technology in which porous electrodes (activated carbon materials) are used to temporarily store ions. In this technology, porous carbon used as electrodes have inherent limitations, such as low electrical conductivity, low capacitance, etc., and, as such, optimization of electrode materials by rational design to obtain hybrid electrodes is key towards improvement in desalination performance. In this work, different compositions of mixture of reduced graphene oxide (RGO) and activated carbon (from 5 to 20 wt% RGO) have been prepared and tested as electrodes for brackish water desalination. The physico-chemical and electrochemical properties of the activated carbon (AC), reduced graphene oxide (RGO), and as-prepared electrodes (AC/RGO-x) were characterized by low-temperature nitrogen adsorption measurement, scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FT-IR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Among all the composite electrodes, AC/RGO-5 (RGO at 5 wt%) possessed the highest specific capacitance (74 F g−1) and the highest maximum salt adsorption capacity (mSAC) of 8.10 mg g−1 at an operating voltage ∆E = 1.4 V. This shows that this simple approach could offer a potential way of fabricating electrodes of accentuated carbon network of an improved electronic conductivity that’s much coveted in CDI technology.</jats:p>

Topics
  • porous
  • Carbon
  • scanning electron microscopy
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • Nitrogen
  • composite
  • electrochemical-induced impedance spectroscopy
  • Raman spectroscopy
  • electrical conductivity
  • cyclic voltammetry
  • deionisation method