Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uschmann, Ingo

  • Google
  • 1
  • 11
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Polarization Dependent Excitation and High Harmonic Generation from Intense Mid-IR Laser Pulses in ZnO14citations

Places of action

Chart of shared publication
Spielmann, Christian
1 / 1 shared
Herrmann, Paul
1 / 1 shared
Hollinger, Richard
1 / 1 shared
Korolev, Viacheslav
1 / 1 shared
Shumakova, Valentina
1 / 1 shared
Zapf, Maximilian
1 / 2 shared
Pugžlys, Audrius
1 / 1 shared
Röder, Robert
1 / 2 shared
Kartashov, Daniil
1 / 1 shared
Baltuška, Andrius
1 / 1 shared
Ronning, Carsten
1 / 14 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Spielmann, Christian
  • Herrmann, Paul
  • Hollinger, Richard
  • Korolev, Viacheslav
  • Shumakova, Valentina
  • Zapf, Maximilian
  • Pugžlys, Audrius
  • Röder, Robert
  • Kartashov, Daniil
  • Baltuška, Andrius
  • Ronning, Carsten
OrganizationsLocationPeople

article

Polarization Dependent Excitation and High Harmonic Generation from Intense Mid-IR Laser Pulses in ZnO

  • Spielmann, Christian
  • Herrmann, Paul
  • Hollinger, Richard
  • Korolev, Viacheslav
  • Shumakova, Valentina
  • Zapf, Maximilian
  • Pugžlys, Audrius
  • Uschmann, Ingo
  • Röder, Robert
  • Kartashov, Daniil
  • Baltuška, Andrius
  • Ronning, Carsten
Abstract

<jats:p>The generation of high order harmonics from femtosecond mid-IR laser pulses in ZnO has shown great potential to reveal new insight into the ultrafast electron dynamics on a few femtosecond timescale. In this work we report on the experimental investigation of photoluminescence and high-order harmonic generation (HHG) in a ZnO single crystal and polycrystalline thin film irradiated with intense femtosecond mid-IR laser pulses. The ellipticity dependence of the HHG process is experimentally studied up to the 17th harmonic order for various driving laser wavelengths in the spectral range 3–4 µm. Interband Zener tunneling is found to exhibit a significant excitation efficiency drop for circularly polarized strong-field pump pulses. For higher harmonics with energies larger than the bandgap, the measured ellipticity dependence can be quantitatively described by numerical simulations based on the density matrix equations. The ellipticity dependence of the below and above ZnO band gap harmonics as a function of the laser wavelength provides an efficient method for distinguishing the dominant HHG mechanism for different harmonic orders.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • photoluminescence
  • single crystal
  • thin film
  • simulation