People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saari, Jesse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Ti3+ Self-Doping-Mediated Optimization of TiO2 Photocatalyst Coating Grown by Atomic Layer Depositioncitations
- 2023Is Carrier Mobility a Limiting Factor for Charge Transfer in Tio2/Si Devices? A Study by Transient Reflectance Spectroscopycitations
- 2022Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coating
- 2022Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Depositioncitations
- 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO2citations
- 2021Interface Engineering of TiO2 Photoelectrode Coatings Grown by Atomic Layer Deposition on Siliconcitations
- 2020Optimization of photogenerated charge carrier lifetimes in ald grown tio2 for photonic applicationscitations
- 2019Defect engineering of atomic layer deposited TiO2 for photocatalytic applications
- 2019Diversity of TiO2: Controlling the molecular and electronic structure of atomic layer deposited black TiO2citations
- 2018Fabrication of topographically microstructured titanium silicide interface for advanced photonic applicationscitations
- 2018Role of Oxide Defects in ALD grown TiO2 Coatings on Performance as Photoanode Protection Layer
- 2018Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defectscitations
- 2017Role of Oxide Defects in ALD grown TiO2 Coatings on Performance as Photoanode Protection Layer
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2016Fabrication of topographically microstructured titanium silicide interface for advanced photonic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Optimization of photogenerated charge carrier lifetimes in ald grown tio2 for photonic applications
Abstract
Titanium dioxide (TiO2) thin films are widely employed for photocatalytic and photovoltaic applications where the long lifetime of charge carriers is a paramount requirement for the device efficiency. To ensure the long lifetime, a high temperature treatment is used which restricts the applicability of TiO2 in devices incorporating organic or polymer components. In this study, we exploited low temperature (100–150◦ C) atomic layer deposition (ALD) of 30 nm TiO2 thin films from tetrakis(dimethylamido)titanium. The deposition was followed by a heat treatment in air to find the minimum temperature requirements for the film fabrication without compromising the carrier lifetime. Femto-to nanosecond transient absorption spectroscopy was used to determine the lifetimes, and grazing incidence X-ray diffraction was employed for structural analysis. The optimal result was obtained for the TiO2 thin films grown at 150◦ C and heat-treated at as low as 300◦ C. The deposited thin films were amorphous and crystallized into anatase phase upon heat treatment at 300–500◦ C. The average carrier lifetime for amorphous TiO2 is few picoseconds but increases to >400 ps upon crystallization at 500◦ C. The samples deposited at 100◦ C were also crystallized as anatase but the carrier lifetime was <100 ps. ; Peer reviewed