People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martínez, Raquel Montes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 20200D polymer nanocomposite carbon-paste electrodes using carbon nanohornscitations
- 2020Customized In Situ Functionalization of Nanodiamonds with Nanoparticles for Composite Carbon-Paste Electrodescitations
- 2018Electrochemical Biosensor Based on Optimized Biocomposite for Organophosphorus and Carbamates Pesticides Detectioncitations
- 2018Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samplescitations
- 2017Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensingcitations
- 2016Highly sensitive electrochemical immunosensor for IgG detection based on optimized rigid biocompositescitations
- 2015Improvement of the detection limit for biosensors: Advances on the optimization of biocomposite compositioncitations
- 2014Towards to the improvement of the analytical response in voltammetric sensors based on rigid compositescitations
Places of action
Organizations | Location | People |
---|
article
Customized In Situ Functionalization of Nanodiamonds with Nanoparticles for Composite Carbon-Paste Electrodes
Abstract
<p>The incorporation of nanomaterials on (bio)sensors based on composite materials has led to important advances in the analytical chemistry field due to the extraordinary properties that these materials offer. Nanodiamonds (NDs) are a novel type of material that has raised much attention, as they have the possibility of being produced on a large scale by relatively inexpensive synthetic methodologies. Moreover, NDs can present some other interesting features, such as fluorescence, due to surface functionalization and proved biocompatibility, which makes them suitable for biomedical applications. In addition, NDs can be customized with metallic nanoparticles (NPs), such as silver or gold, in order to combine the features of both. Raw NDs were used as modifiers of sensors due to the electrocatalytic effect of the sp<sup>2</sup> and oxygenated species present on their surface. The aim of this research work is evaluating the applicability of NDs modified with silver (Ag@NDs) and gold (Au@NDs) nanoparticles for the development of a suitable (bio)sensing platform. A complete morphological and electrochemical characterization as a function of the prepared nanocomposite composition was performed in order to improve the electroanalytical properties of the developed (bio)sensors. In the present work, the optimal composition for Au@NDs present on the nanocomposite matrix is 3.5% and the one for Ag@NDs is 1%. Good results were obtained in the evaluation of the optimal composition towards hydrogen peroxide and glucose as a model analyte using a (bio)sensor based on graphite-epoxy-Ag@NDs (17:82:1).</p>