Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Locs, Janis

  • Google
  • 8
  • 33
  • 742

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Apatite/Chitosan Composites Formed by Cold Sintering for Drug Delivery and Bone Tissue Engineering Applications7citations
  • 2024Apatite/Chitosan Composites Formed by Cold Sintering for Drug Delivery and Bone Tissue Engineering Applications7citations
  • 2023Amorphous Calcium Phosphate and Amorphous Calcium Phosphate Carboxylate: Synthesis and Characterization22citations
  • 2023Octacalcium Phosphate-Laden Hydrogels on 3D-Printed Titanium Biomaterials Improve Corrosion Resistance in Simulated Biological Media23citations
  • 2020Preparation of a ceramic matrix composite made of hydroxyapatite nanoparticles and polylactic acid by consolidation of composite granules20citations
  • 2017Biodegradable materials and metallic implants - a review387citations
  • 2017Thermoelectric properties of dense Sb-doped SnO 2 ceramics38citations
  • 2015Fabrication, properties and applications of dense hydroxyapatite: a review238citations

Places of action

Chart of shared publication
Galotta, Anna
2 / 3 shared
Demir, Oznur
1 / 1 shared
Marsan, Olivier
2 / 11 shared
Loca, Dagnija
5 / 7 shared
Sglavo, Vincenzo M.
1 / 36 shared
Combes, Christele
1 / 2 shared
Demir, Öznur
1 / 1 shared
Sglavo, Vincenzo
1 / 6 shared
Combes, Christèle
1 / 28 shared
Choudhary, Rajan
1 / 3 shared
Boccaccini, Ar
1 / 302 shared
Sarakovskis, Anatolijs
1 / 2 shared
Indurkar, Abhishek
1 / 1 shared
Rubenis, Kristaps
2 / 4 shared
Nimbalkar, Mansingraj
1 / 1 shared
Kovrlija, Ilijana
1 / 1 shared
Gasik, Michael
1 / 46 shared
Bordbar-Khiabani, Aydin
1 / 8 shared
Pietrzykowska, Elżbieta
1 / 2 shared
Romelczyk-Baishya, Barbara
1 / 13 shared
Sokolova, Marina
1 / 1 shared
Święszkowski, Wojciech
1 / 53 shared
Wojnarowicz, Jacek
1 / 4 shared
Łojkowski, Witold
1 / 7 shared
Szlązak, Karol
1 / 10 shared
Prakasam, Mythili
2 / 32 shared
Largeteau, Alain
2 / 31 shared
Berzina-Cimdina, Liga
2 / 2 shared
Salma-Ancane, Kristine
2 / 3 shared
Populoh, Sascha
1 / 14 shared
Thiel, Philipp
1 / 2 shared
Yoon, Songhak
1 / 16 shared
Müller, Ulrich
1 / 29 shared
Chart of publication period
2024
2023
2020
2017
2015

Co-Authors (by relevance)

  • Galotta, Anna
  • Demir, Oznur
  • Marsan, Olivier
  • Loca, Dagnija
  • Sglavo, Vincenzo M.
  • Combes, Christele
  • Demir, Öznur
  • Sglavo, Vincenzo
  • Combes, Christèle
  • Choudhary, Rajan
  • Boccaccini, Ar
  • Sarakovskis, Anatolijs
  • Indurkar, Abhishek
  • Rubenis, Kristaps
  • Nimbalkar, Mansingraj
  • Kovrlija, Ilijana
  • Gasik, Michael
  • Bordbar-Khiabani, Aydin
  • Pietrzykowska, Elżbieta
  • Romelczyk-Baishya, Barbara
  • Sokolova, Marina
  • Święszkowski, Wojciech
  • Wojnarowicz, Jacek
  • Łojkowski, Witold
  • Szlązak, Karol
  • Prakasam, Mythili
  • Largeteau, Alain
  • Berzina-Cimdina, Liga
  • Salma-Ancane, Kristine
  • Populoh, Sascha
  • Thiel, Philipp
  • Yoon, Songhak
  • Müller, Ulrich
OrganizationsLocationPeople

article

Preparation of a ceramic matrix composite made of hydroxyapatite nanoparticles and polylactic acid by consolidation of composite granules

  • Pietrzykowska, Elżbieta
  • Romelczyk-Baishya, Barbara
  • Sokolova, Marina
  • Locs, Janis
  • Święszkowski, Wojciech
  • Wojnarowicz, Jacek
  • Łojkowski, Witold
  • Szlązak, Karol
Abstract

<p>Composites made of a biodegradable polymer, e.g., polylactic acid (PLA) and hydroxyapatite nanoparticles (HAP NPs) are promising orthopedic materials. There is a particular need for biodegradable hybrid nanocomposites with strong mechanical properties. However, obtaining such composites is challenging, since nanoparticles tend to agglomerate, and it is difficult to achieve good bonding between the hydrophilic ceramic and the hydrophobic polymer. This paper describes a two-step technology for obtaining a ceramic matrix composite. The first step is the preparation of composite granules. The granules are obtained by infiltration of porous granules of HAP NPs with PLA through high-pressure infiltration. The homogeneous ceramic-polymer granules are 80 µm in diameter, and the composite granules are 80 wt% HAP NPs. The second step is consolidation of the granules using high pressure. This is performed in three variants: Uniaxial pressing with the pressure of up to 1000 MPa at room temperature, warm isostatic compaction (75 MPa at 155<sup>◦</sup> C), and a combination of the two methods. The combined methods result in the highest densification (99%) and strongest mechanical properties; the compressive strength is 374 MPa. The structure of the ceramic matrix composite is homogeneous. Good adhesion between the inorganic and the organic component is observable using scanning electron microscopy.</p>

Topics
  • nanoparticle
  • porous
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • scanning electron microscopy
  • strength
  • ceramic
  • densification