People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zuppolini, Simona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021Effect of strain rate and silica filler content on the compressive behavior of RTM6 epoxy-based nanocompositescitations
- 2020Aromatic Hyperbranched Polyester/RTM6 Epoxy Resin for EXTREME Dynamic Loading Aeronautical Applicationscitations
- 2018Compressive behavior of epoxy resin filled with silica nanoparticles at high strain rate
Places of action
Organizations | Location | People |
---|
article
Aromatic Hyperbranched Polyester/RTM6 Epoxy Resin for EXTREME Dynamic Loading Aeronautical Applications
Abstract
The effects of the addition of an aromatic hyperbranched polyester (AHBP) on thermal, mechanical, and fracture toughness properties of a thermosetting resin system were investigated. AHBP filler, synthesized by using a bulk poly-condensation reaction, reveals a glassy state at room temperature. Indeed, according to differential scanning calorimetry measurements, the glass transition temperature (Tg) of AHBP is 95 °C. Three different adduct weight percentages were employed to manufacture the AHBP/epoxy samples, respectively, 0.1, 1, and 5 wt%. Dynamical Mechanical Analysis tests revealed that the addition of AHBP induces a negligible variation in terms of conservative modulus, whereas a slight Tg reduction of about 4 °C was observed at 5 wt% of filler content. Fracture toughness results showed an improvement of both critical stress intensity factor (+18%) and critical strain energy release rate (+83%) by adding 5 wt% of AHBP compared to the neat epoxy matrix. Static and dynamic compression tests covering strain rates ranging from 0.0008 to 1000 s−1 revealed a pronounced strain rate sensitivity for all AHBP/epoxy systems. The AHBP composites all showed an increase of the true peak yield compressive strength with the best improvement associated with the sample with 0.1 wt% of AHBP.